Quasi-static versus dynamic triggering of fault slip
Abstract
The quasi-static triggering of fault slip has long been recognized as a mechanism of earthquakes. The dynamic triggering of fault slip is associated with earthquake aftershocks and man-made geological hazards, such as rock collapse in underground excavations and induced seismicity in geothermal productions. The objective of this study is to experimentally investigate the differences between quasi-static and dynamic triggering of fault slip. A direct-shear configuration (Fig. 1) is developed to simulate fault slip, which consists of an incident norite plate (1000 × 120 × 30 mm) and a transverse norite plate (500 × 80 × 30 mm). A quartz sand layer is sandwiched between the incident and transverse plates to simulate a granular fault zone. A servo-controlled quasi-static loading system induces the quasi-static triggering of fault slip, and a dynamic loading system containing two parallel compressed springs instantaneously launches a striker norite plate (100 × 120 × 30 mm) to induce an incident P-wave (a half-wavelength of 750 mm). The P-wave propagates in the incident plate and causes the dynamic triggering of fault slip. The dynamic triggering of fault slip is designed to be solely induced by the P-wave before wave reflection at the plate end. Both quasi-static and dynamic triggering induce non-uniform shear stress distribution along the fault zone. There is a shear stress at the trailing edge, which controls the fault slip, and a rebound stress at the leading edge, which is caused by a small moment. The fault slip is triggered when the maximum shear stress reaches a critical value at the trailing edge and is accompanied by shear stress drop. The quasi-static triggering of fault slip is unrecoverable and includes a main slip and a few short slips before and after the main slip. The dynamic triggering of fault slip can be partially recovered after the P-wave and consists of a few unrecovered slips. The duration of the dynamic triggering of fault slip is a few microseconds, while the duration of the quasi-static triggering is from a few seconds to many years. Fault strengthening takes a long time between slips. However, seismic waves may successively induce fault slip and restrict fault self-healing. Fig. 1 Schematic diagram of the direct-shear configuration.
- Publication:
-
AGU Fall Meeting Abstracts
- Pub Date:
- December 2013
- Bibcode:
- 2013AGUFMMR13A2236W
- Keywords:
-
- 8010 STRUCTURAL GEOLOGY Fractures and faults;
- 7209 SEISMOLOGY Earthquake dynamics