LVFS: A Scalable Petabye/Exabyte Data Storage System
Abstract
Managing petabytes of data with hundreds of millions of files is the first step necessary towards an effective big data computing and collaboration environment in a distributed system. We describe here the MODAPS LAADS Virtual File System (LVFS), a new storage architecture which replaces the previous MODAPS operational Level 1 Land Atmosphere Archive Distribution System (LAADS) NFS based approach to storing and distributing datasets from several instruments, such as MODIS, MERIS, and VIIRS. LAADS is responsible for the distribution of over 4 petabytes of data and over 300 million files across more than 500 disks. We present here the first LVFS big data comparative performance results and new capabilities not previously possible with the LAADS system. We consider two aspects in addressing inefficiencies of massive scales of data. First, is dealing in a reliable and resilient manner with the volume and quantity of files in such a dataset, and, second, minimizing the discovery and lookup times for accessing files in such large datasets. There are several popular file systems that successfully deal with the first aspect of the problem. Their solution, in general, is through distribution, replication, and parallelism of the storage architecture. The Hadoop Distributed File System (HDFS), Parallel Virtual File System (PVFS), and Lustre are examples of such file systems that deal with petabyte data volumes. The second aspect deals with data discovery among billions of files, the largest bottleneck in reducing access time. The metadata of a file, generally represented in a directory layout, is stored in ways that are not readily scalable. This is true for HDFS, PVFS, and Lustre as well. Recent experimental file systems, such as Spyglass or Pantheon, have attempted to address this problem through redesign of the metadata directory architecture. LVFS takes a radically different architectural approach by eliminating the need for a separate directory within the file system. The LVFS system replaces the NFS disk mounting approach of LAADS and utilizes the already existing highly optimized metadata database server, which is applicable to most scientific big data intensive compute systems. Thus, LVFS ties the existing storage system with the existing metadata infrastructure system which we believe leads to a scalable exabyte virtual file system. The uniqueness of the implemented design is not limited to LAADS but can be employed with most scientific data processing systems. By utilizing the Filesystem In Userspace (FUSE), a kernel module available in many operating systems, LVFS was able to replace the NFS system while staying POSIX compliant. As a result, the LVFS system becomes scalable to exabyte sizes owing to the use of highly scalable database servers optimized for metadata storage. The flexibility of the LVFS design allows it to organize data on the fly in different ways, such as by region, date, instrument or product without the need for duplication, symbolic links, or any other replication methods. We proposed here a strategic reference architecture that addresses the inefficiencies of scientific petabyte/exabyte file system access through the dynamic integration of the observing system's large metadata file.
- Publication:
-
AGU Fall Meeting Abstracts
- Pub Date:
- December 2013
- Bibcode:
- 2013AGUFMIN21D..04G
- Keywords:
-
- 1912 INFORMATICS Data management;
- preservation;
- rescue;
- 1916 INFORMATICS Data and information discovery;
- 1932 INFORMATICS High-performance computing