Change in Urban Albedo in London: A Multi-scale Perspective
Abstract
Urbanization-induced change in land use has considerable implications for climate, air quality, resources and ecosystems. Urban-induced warming is one of the most well-known impacts. This directly and indirectly can extend beyond the city. One way to reduce the size of this is to modify the surface atmosphere exchanges through changing the urban albedo. As increased rugosity caused by the morphology of a city results in lower albedo with constant material characteristics, the impacts of changing the albedo has impacts across a range of scales. Here a multi-scale assessment of the potential effects of the increase in albedo in London is presented. This includes modeling at the global and meso-scale informed by local and micro-scale measurements. In this study the first order calculations are conducted for the impact of changing the albedo (e.g. a 0.01 increase) on the radiative exchange. For example, when incoming solar radiation and cloud cover are considered, based on data retrieved from NASA (http://power.larc.nasa.gov/) for ~1600 km2 area of London, would produce a mean decrease in the instantaneous solar radiative forcing on the same surface of 0.40 W m-2. The nature of the surface is critical in terms of considering the impact of changes in albedo. For example, in the Central Activity Zone in London pavement and building can vary from 10 to 100% of the plan area. From observations the albedo is seen to change dramatically with changes in building materials. For example, glass surfaces which are being used increasingly in the central business district results in dramatic changes in albedo. Using the documented albedo variations determined across different scales the impacts are considered. For example, the effect of the increase in urban albedo is translated into the corresponding amount of avoided emission of carbon dioxide that produces the same effect on climate. At local scale, the effect that the increase in urban albedo can potentially have on local climate is calculated using numerical modelling to mitigate the urban heat island in London. The co-benefits from decreasing the urban temperature are then considered. These include a reduction in the peak of tropospheric ozone formation, a decrease heat stress to the city dwellers as well as in energy demand. The extreme summer temperatures have most of the impact on people socially and physically vulnerable people. The decrease in summer temperatures has positive effects on human health decreasing the mortality for natural causes as well as for respiratory and cardio-vascular diseases promoting socially equality. The increase in urban albedo - with a particular reference to changes in pavements and rooftops - can be easily integrated in urban and building maintenance plans. Since the increase in urban albedo can affect both the global and local scale, the results of this extensive and multi-level study are useful to address-policy-relevant strategies for coping with the effects of climate. In particular, they can provide insights for multi-level governance strategies and for shaping mitigation and adaptation strategies.
- Publication:
-
AGU Fall Meeting Abstracts
- Pub Date:
- December 2013
- Bibcode:
- 2013AGUFMGC51E..05S
- Keywords:
-
- 1632 GLOBAL CHANGE Land cover change;
- 1631 GLOBAL CHANGE Land/atmosphere interactions;
- 1637 GLOBAL CHANGE Regional climate change