An Evaluation of CMIP5 Precipitation Variability for China Relative to Observations and CMIP3
Abstract
Precipitation represents an important link between the atmosphere, hydrosphere, and biosphere and is thus a key component of the climate system. As indicated by the Fourth Assessment Report (AR4) of the Intergovernmental Panel on Climate Change (IPCC), global surface air temperatures increased by 0.74°C during the 20th century, with further warming of 0.2°C/decade projected by the 2030s. Projected changes in precipitation, however, are much more variable, and exhibit more complex temporal and spatial patterns. This presentation focuses on precipitation variability based on 20 general circulation models (GCMs) participating in the fifth coupled model intercomparison project (CMIP5). Specifically, we focus on China and provide a comprehensive evaluation of the CMIP5 models compared to historical 20th century precipitation variability from two observational precipitation products: the University of East Anglia's Climatic Research Unit (CRU) time series (TS) dataset version 3.10, and the Global Precipitation Climatology Centre (GPCC) version 6. We also reassess the performance of the third CMIP (CMIP3) to quantify potential improvements in CMIP5 over the previous generation of GCMs. Finally, we provide 21st century precipitation projections for China based on three representative concentration pathways (RCP): RCP 8.5, 4.5, and 2.6. These future precipitation projections are presented in light of the observed 20th century biases in the models. We find that CMIP5 models are able to better reproduce the general spatial pattern of observed 20th century precipitation than CMIP3. However, for China as a whole, the annual precipitation magnitude is overestimated in CMIP5, more so than in CMIP3. This smaller overestimation in CMIP3 was primarily driven by a large underestimation of summer precipitation. Spatially, overestimated precipitation magnitudes are evident for most regions of China, especially along the eastern margin of the Tibetan Plateau. Over southeastern China during summer, the precipitation amounts are underestimated. The multidecadal precipitation variability in CMIP5 is muted relative to observations, but improved when compared to CMIP3. We also assess precipitation trends and correlations relative to observations, and again find better agreement for CMIP5 than for CMIP3. Both observations and models indicated precipitation increases over parts of northwestern China, and decreases over the Tibetan Plateau throughout the 20th century. However, for the southeastern and northern regions of China there is poor agreement in precipitation trends. Precipitation is projected to increase across all of China under all the three emission scenarios during the 21st century. The largest significant trend is evident for RCP 8.5, which projects a precipitation increase of 1.5 mm/year, resulting in a 16% increase in precipitation by the end of the century. The smallest increases are projected to occur under the RCP 2.6 scenario, resulting in only a +6% change by 2100. The regions of greatest precipitation increases are the Tibetan Plateau and eastern China during summer, suggesting a potential change in the monsoonal circulation in the future.
- Publication:
-
AGU Fall Meeting Abstracts
- Pub Date:
- December 2013
- Bibcode:
- 2013AGUFMGC43D1084F
- Keywords:
-
- 1616 GLOBAL CHANGE Climate variability;
- 1627 GLOBAL CHANGE Coupled models of the climate system;
- 1854 HYDROLOGY Precipitation;
- 9320 GEOGRAPHIC LOCATION Asia