New statistical downscaling for Canada
Abstract
This poster will document the production of a set of statistically downscaled future climate projections for Canada based on the latest available RCM and GCM simulations - the North American Regional Climate Change Assessment Program (NARCCAP; Mearns et al. 2007) and the Coupled Model Intercomparison Project Phase 5 (CMIP5). The main stages of the project included (1) downscaling method evaluation, (2) scenarios selection, (3) production of statistically downscaled results, and (4) applications of results. We build upon a previous downscaling evaluation project (Bürger et al. 2012, Bürger et al. 2013) in which a quantile-based method (Bias Correction/Spatial Disaggregation - BCSD; Werner 2011) provided high skill compared with four other methods representing the majority of types of downscaling used in Canada. Additional quantile-based methods (Bias-Correction/Constructed Analogues; Maurer et al. 2010 and Bias-Correction/Climate Imprint ; Hunter and Meentemeyer 2005) were evaluated. A subset of 12 CMIP5 simulations was chosen based on an objective set of selection criteria. This included hemispheric skill assessment based on the CLIMDEX indices (Sillmann et al. 2013), historical criteria used previously at the Pacific Climate Impacts Consortium (Werner 2011), and refinement based on a modified clustering algorithm (Houle et al. 2012; Katsavounidis et al. 1994). Statistical downscaling was carried out on the NARCCAP ensemble and a subset of the CMIP5 ensemble. We produced downscaled scenarios over Canada at a daily time resolution and 300 arc second (~10 km) spatial resolution from historical runs for 1951-2005 and from RCP 2.6, 4.5, and 8.5 projections for 2006-2100. The ANUSPLIN gridded daily dataset (McKenney et al. 2011) was used as a target. It has national coverage, spans the historical period of interest 1951-2005, and has daily time resolution. It uses interpolation of station data based on thin-plate splines. This type of method has been shown to have superior skill in interpolating RCM data over North America (McGinnis et al. 2012). An early application of the new dataset was to provide projections of climate extremes for adaptation planning by the British Columbia Ministry of Transportation and Infrastructure. Recently, certain stretches of highway have experienced extreme precipitation events resulting in substantial damage to infrastructure. As part of the planning process to refurbish or replace components of these highways, information about the magnitude and frequency of future extreme events are needed to inform the infrastructure design. The increased resolution provided by downscaling improves the representation of topographic features, particularly valley temperature and precipitation effects. A range of extreme values, from simple daily maxima and minima to complex multi-day and threshold-based climate indices were computed and analyzed from the downscaled output. Selected results from this process and how the projections of precipitation extremes are being used in the context of highway infrastructure planning in British Columbia will be presented.
- Publication:
-
AGU Fall Meeting Abstracts
- Pub Date:
- December 2013
- Bibcode:
- 2013AGUFMGC43C1069M
- Keywords:
-
- 1626 GLOBAL CHANGE Global climate models;
- 1637 GLOBAL CHANGE Regional climate change;
- 1630 GLOBAL CHANGE Impacts of global change;
- 9350 GEOGRAPHIC LOCATION North America