Uncertainty Quantification of Equilibrium Climate Sensitivity in CCSM4
Abstract
Uncertainty in the global mean equilibrium surface warming due to doubled atmospheric CO2, as computed by a "slab ocean" configuration of the Community Climate System Model version 4 (CCSM4), is quantified using 1,039 perturbed-input-parameter simulations. The slab ocean configuration reduces the model's e-folding time when approaching an equilibrium state to ~5 years. This time is much less than for the full ocean configuration, consistent with the shallow depth of the upper well-mixed layer of the ocean represented by the "slab." Adoption of the slab ocean configuration requires the assumption of preset values for the convergence of ocean heat transport beneath the upper well-mixed layer. A standard procedure for choosing these values maximizes agreement with the full ocean version's simulation of the present-day climate when input parameters assume their default values. For each new set of input parameter values, we computed the change in ocean heat transport implied by a "Phase 1" model run in which sea surface temperatures and sea ice concentrations were set equal to present-day values. The resulting total ocean heat transport (= standard value + change implied by Phase 1 run) was then input into "Phase 2" slab ocean runs with varying values of atmospheric CO2. Our uncertainty estimate is based on Latin Hypercube sampling over expert-provided uncertainty ranges of N = 36 adjustable parameters in the atmosphere (CAM4) and sea ice (CICE4) components of CCSM4. Two-dimensional projections of our sampling distribution for the N(N-1)/2 possible pairs of input parameters indicate full coverage of the N-dimensional parameter space, including edges. We used a machine learning-based support vector regression (SVR) statistical model to estimate the probability density function (PDF) of equilibrium warming. This fitting procedure produces a PDF that is qualitatively consistent with the raw histogram of our CCSM4 results. Most of the values from the SVR statistical model are within ~0.1 K of the raw results, well below the inter-decile range inferred below. Independent validation of the fit indicates residual errors that are distributed about zero with a standard deviation of 0.17 K. Analysis of variance shows that the equilibrium warming in CCSM4 is mainly linear in parameter changes. Thus, in accord with the Central Limit Theorem of statistics, the PDF of the warming is approximately Gaussian, i.e. symmetric about its mean value (3.0 K). Since SVR allows for highly nonlinear fits, the symmetry is not an artifact of the fitting procedure. The 10-90 percentile range of the PDF is 2.6-3.4 K, consistent with earlier estimates from CCSM4 but narrower than estimates from other models, which sometimes produce a high-temperature asymmetric tail in the PDF. This work was performed under auspices of the US Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344, and was funded by LLNL's Uncertainty Quantification Strategic Initiative (Laboratory Directed Research and Development Project 10-SI-013).
- Publication:
-
AGU Fall Meeting Abstracts
- Pub Date:
- December 2013
- Bibcode:
- 2013AGUFMGC31B1039C
- Keywords:
-
- 1626 GLOBAL CHANGE Global climate models