Characterizing Vegetation Model Skill and Uncertainty in Simulated Ecosystem Response to Climate Change in the United States
Abstract
We simulated ecosystem response to climate change in the USA and Canada at a 5 arc-minute grid resolution using the MC1 dynamic global vegetation model and nine CMIP3 future climate projections as input. The climate projections were produced by 3 GCMs simulating 3 SRES emissions scenarios. We examined MC1 outputs for the conterminous USA by summarizing them by EPA level II and III ecoregions to characterize model skill and evaluate the magnitude and uncertainties of simulated ecosystem response to climate change. First, we evaluated model skill by comparing outputs from the recent historical period with benchmark datasets. Distribution of potential natural vegetation simulated by MC1 was compared with Kuchler's map. Above ground live carbon simulated by MC1 was compared with the National Biomass and Carbon Dataset. Fire return intervals calculated by MC1 were compared with maximum and minimum values compiled for the United States. Each EPA Level III Ecoregion was scored for average agreement with corresponding benchmark data and an average score was calculated for all three types of output. Greatest agreement with benchmark data happened in the Western Cordillera, the Ozark / Ouachita-Appalachian Forests, and the Southeastern USA Plains (EPA Level II Ecoregions). The lowest agreement happened in the Everglades and the Tamaulipas-Texas Semiarid Plain. For simulated ecosystem response to future climate projections we examined MC1 output for shifts in vegetation type, vegetation carbon, runoff, and biomass consumed by fire. Each ecoregion was scored for the amount of change from historical conditions for each variable and an average score was calculated. Smallest changes were forecast for Western Cordillera and Marine West Coast Forest ecosystems. Largest changes were forecast for the Cold Deserts, the Mixed Wood Plains, and the Central USA Plains. By combining scores of model skill for the historical period for each EPA Level 3 Ecoregion with scores representing the magnitude of ecosystem changes in the future, we identified high and low uncertainty ecoregions. The largest anticipated changes and the lowest measures of model skill coincide in the Central USA Plains and the Mixed Wood Plains. The combination of low model skill and high degree of ecosystem change elevate the importance of our uncertainty in this ecoregion. The highest projected changes coincide with relatively high model skill in the Cold Deserts. Climate adaptation efforts are the most likely to pay off in these regions. Finally, highest model skill and lowest anticipated changes coincide in the Western Cordillera and the Marine West Coast Forests. These regions may be relatively low-risk for climate change impacts when compared to the other ecoregions. These results represent only the first step in this type of analysis; there exist many ways to strengthen it. One, MC1 calibrations can be optimized using a structured optimization technique. Two, a larger set of climate projections can be used to capture a fuller range of GCMs and emissions scenarios. And three, employing an ensemble of vegetation models would make the analysis more robust.
- Publication:
-
AGU Fall Meeting Abstracts
- Pub Date:
- December 2013
- Bibcode:
- 2013AGUFMGC23B0916D
- Keywords:
-
- 0466 BIOGEOSCIENCES Modeling;
- 1699 GLOBAL CHANGE General or miscellaneous;
- 9350 GEOGRAPHIC LOCATION North America;
- 0414 BIOGEOSCIENCES Biogeochemical cycles;
- processes;
- and modeling