Historical and future hydrologic response to glacier recession in the Cordillera Real, Bolivia
Abstract
In many partially glaciated watersheds climate-forced glacier recession has altered and will continue to alter seasonal water availability, leading to profound implications for water supply systems. The tropical glaciers of the Cordillera Real, Bolivia, whose melt water significantly contributes to water supply and energy production for the densely populated La Paz area, have retreated at unprecedented rates since the 1970's. This glacier recession will continue with ongoing increasing temperatures projected for the subtropical Andes. We use a recently developed glacio-hydrological model to evaluate the contribution of glacier melt to watershed discharge, and track this contribution in time with changing glacier area. A glacier model, solving time-evolving and spatially-distributed balance equations for glacier mass and momentum, is integrated within the Distributed Hydrology Soil Vegetation Model (DHSVM). The glacio-hydrologic behavior of Cordillera Real watersheds is simulated during the historical period of 1987-2010. This model application is validated through comparisons with satellite derived glacier extent estimates and in-situ mass balance, surface energy flux, and stream discharge measurements. The retrospective analysis indicates that glacier melt contributed, on average, 31% (63%) of total annual (dry season-JJA) watershed discharge. Further, the modeling approach is used to predict the transitioning contribution of glacier melt and watershed hydrology through the 21st century. Multiple realizations of the 21st century meteorological data, used to force the glacier-hydrological model, are produced using a stochastic statistical downscaling technique. In this technique a weather generator (Advanced Weather Generator, AWE-GEN) is employed with statistical parameters of the future climate obtained from predictions of 11 CMIP5 general circulation models (GCMs). Future simulations indicate a 17% (23%) decrease in annual (JJA) runoff by the end of the 21st century. The results of this study demonstrate the applicability of dynamic modeling, of both glacier and watershed processes, for prediction of trends and uncertainties of the future hydrology of vulnerable high altitude areas that rely on glacier melt.
- Publication:
-
AGU Fall Meeting Abstracts
- Pub Date:
- December 2013
- Bibcode:
- 2013AGUFMGC21E..05F
- Keywords:
-
- 0720 CRYOSPHERE Glaciers;
- 1807 HYDROLOGY Climate impacts;
- 1847 HYDROLOGY Modeling;
- 1863 HYDROLOGY Snow and ice