Climate variables as predictors for seasonal forecast of dengue occurrence in Chennai, Tamil Nadu
Abstract
Background Dengue is a recently emerging vector borne diseases in Chennai. As per the WHO report in 2011 dengue is one of eight climate sensitive disease of this century. Objective Therefore an attempt has been made to explore the influence of climate parameters on dengue occurrence and use for forecasting. Methodology Time series analysis has been applied to predict the number of dengue cases in Chennai, a metropolitan city which is the capital of Tamil Nadu, India. Cross correlation of the climate variables with dengue cases revealed that the most influential parameters were monthly relative humidity, minimum temperature at 4 months lag and rainfall at one month lag (Table 1). However due to intercorrelation of relative humidity and rainfall was high and therefore for predictive purpose the rainfall at one month lag was used for the model development. Autoregressive Integrated Moving Average (ARIMA) models have been applied to forecast the occurrence of dengue. Results and Discussion The best fit model was ARIMA (1,0,1). It was seen that the monthly minimum temperature at four months lag (β= 3.612, p = 0.02) and rainfall at one month lag (β= 0.032, p = 0.017) were associated with dengue occurrence and they had a very significant effect. Mean Relative Humidity had a directly significant positive correlation at 99% confidence level, but the lagged effect was not prominent. The model predicted dengue cases showed significantly high correlation of 0.814(Figure 1) with the observed cases. The RMSE of the model was 18.564 and MAE was 12.114. The model is limited by the scarcity of the dataset. Inclusion of socioeconomic conditions and population offset are further needed to be incorporated for effective results. Conclusion Thus it could be claimed that the change in climatic parameters is definitely influential in increasing the number of dengue occurrence in Chennai. The climate variables therefore can be used for seasonal forecasting of dengue with rise in minimum temperature and rainfall at a city level. Table 1. Cross correlation of climate variables with dengue cases in Chennai ** p<0.01,*p<0.05
- Publication:
-
AGU Fall Meeting Abstracts
- Pub Date:
- December 2013
- Bibcode:
- 2013AGUFMGC13D1129S
- Keywords:
-
- 1637 GLOBAL CHANGE Regional climate change;
- 1630 GLOBAL CHANGE Impacts of global change;
- 4318 NATURAL HAZARDS Statistical analysis;
- 4322 NATURAL HAZARDS Health impact