Conceptualizing the Structure of Coupled Estuary, Coast and Inner Shelf Sediment Systems
Abstract
The concept of the coastal cell has endured for 50 years as a geomorphological framework for coastal engineering and management. Cells are readily defined for coasts dominated by alongshore transport of beach-grade material, but the concept struggles to accommodate long range cohesive sediment fluxes. Moreover, the challenges of predicting, understanding and mitigating climate change impacts at the coast demand a richer conceptualization that embraces the connectedness of open coasts with estuaries and the inner shelf at broader scales and that also acknowledges the extent of anthropogenic control. Accordingly, this paper presents a new approach that re-engages with formal systems analysis and restores a geomorphological focus to coastal management problems that have latterly been tackled primarily by engineers. At the heart of this approach is an ontology of landforms and interventions (both structural and non-structural) that is partly inspired by the coastal tract concept and its temporal hierarchy of sediment sharing systems, but which also emphasizes a spatial hierarchy in scale, from coastal regions, through landform complexes, to landforms and human interventions. The complex web of interactions is represented through an influence network in which a sub-set of mass transfer pathways define the sediment system. Guided by a machine-readable ontology and produced within a geospatial framework, such system ';maps' can be utilized in several ways. First, their generation constitutes a form of knowledge formalization in which disparate sources of information (published research, data etc) are generalized into usable knowledge. Second, system maps also provide a repository for more quantitative analyses and system-level modelling at the scales that really matter. Third, they can also be analyzed using methods derived from graph theory to yield potentially valuable insights into the scale linkages that govern the mutual adjustment of estuary, coast and inner shelf morphology and their implications for the development of quantitative models able to capture such behaviour. Illustrative results, produced as a contribution to the NERC Integrated Coastal Sediment Systems (iCOASST) project, are presented for demonstration regions in Liverpool Bay and Suffolk, UK.
- Publication:
-
AGU Fall Meeting Abstracts
- Pub Date:
- December 2013
- Bibcode:
- 2013AGUFMEP22A..02F
- Keywords:
-
- 4217 OCEANOGRAPHY: GENERAL Coastal processes;
- 1958 INFORMATICS Ontologies;
- 1625 GLOBAL CHANGE Geomorphology and weathering