Hydrodynamics and inundation of a tidal saltmarsh in Kent County, Delaware
Abstract
A 2-week field experiment was conducted in March and April 2013 in a tidal wetland in Kent County, Delaware. The study area was a tidal flat fed by a secondary channel of a small tributary of Delaware Bay. The goal of the field study was to investigate spatio-temporal variability in the hydrodynamics of the saltmarsh and tidal flat, over the period of one spring-neap tidal cycle. The experiment combined remotely-sensed imagery with high-frequency in-situ measurements. A tower with imagers (RGB, NIR, TIR) was deployed to quantify the spatial variations of inundation of the channels, flat and marsh. In-situ sensors that measured flow velocity, sediment concentration and water depth were deployed on the tidal flat and in the channels. At three locations, a Nortek Vectrino II - profiling velocimeter was deployed that measured a 30 mm velocity profile at 1 mm vertical increments at 100 Hz. These velocity profiles are used to compute turbulent kinetic energy, energy dissipation and stress profiles close to the bed. Preliminary results of the experiment show that peak velocities occur at the beginning of the rising and end of ebbing tide, when the water levels are low. At these instances, peaks in turbulence and bed stress also occur, which coincides with the largest sediment concentrations that were observed. During both rising and falling tide, flow velocities up to 0.4 m/s were observed in the main channel leading to the tidal flat. After these initial large flow velocities, the flat inundated very quickly, and flow velocities decreased. Furthermore, due to the large flow velocities, bed erosion often took place in the channel at the beginning of each high tide, while deposition occurred during ebbing tide, resulting in small net changes over the tidal cycle. The velocities in the channel relative to those on the adjacent flat were investigated. Furthermore, the relationship between near-bed turbulence and suspended sediment concentration and an analysis of the near-bed turbulence budget will be discussed.
- Publication:
-
AGU Fall Meeting Abstracts
- Pub Date:
- December 2013
- Bibcode:
- 2013AGUFMEP13A0850P
- Keywords:
-
- 4568 OCEANOGRAPHY: PHYSICAL Turbulence;
- diffusion;
- and mixing processes;
- 4546 OCEANOGRAPHY: PHYSICAL Nearshore processes;
- 4558 OCEANOGRAPHY: PHYSICAL Sediment transport