Hydrogeochemical and Isotopic Composition of Pasinler Geothermal Water (Erzurum, Turkey)
Abstract
In this investigation Pasinler (Erzurum) hot water spring has been studied from the point of geology and environmental isotopes. The Pasinler geothermal field is located 37 km east of Erzurum Province. The basement of Pasinler Geothermal field consists of Upper Cretaceous ophiolitic melange, shale, claystone, marl, and limestones, Eocene gabbro, andesite, basalt, trachyandesite, Oligocene andesite and basalt, Lower Miocene reef limestones, Upper Miocene pyroclastics, Plio- Quaternary (sandstone, marl, conglomerate) and Quaternary alluvium. The rhyolite is the reservoir for the geothermal fluid. The tuffs and marls are cap rocks of the system. The fault and related fractures around the Pasinler geothermal field provide pathways for the upward flow of geothermal fluid to the surface. The Alluvium around the Hasankale River is the most important unit as cold groundwater deposits in the study area. The thermal waters in the Pasinler geothermal fields have outlet temperatures of 23 to 35°C in springs. But discharge temperatures in the wells vary between 38-52°C. Geothermal well waters belong to the Na-Ca-Cl-HCO3 type. The Pasinler geothermal water has discharge pH values of 6 to 6.6, electrical conductivity (EC) of 970 to 6233 μS/cm, and TDS values between 635 and 4304 mg/l. δ18O, δ2H and δ3H isotope analyses were carried out to determine the origin of waters, recharge altitude, precipitation types, and groundwater circulation. In the 18O-δ 2H diagram all of the waters in the study area situated near the Globol Meteoric Water Line (GMWL) and indicate meteoric origin with little to no evaporation. According to the δ18O - temperature relation all water samples recharged at the same elevation in the plain. Low tritium coupled with high electrical conductivity and high Cl-value in the Pasinler thermal spring indicate that this spring has deep circulation. In order to determinate the origin of sulphure (SO4) and carbon in the waters, all waters were analysed for their 13CVPDB (Bee Pee Belemnite) and 34SCDT (Canyon Diablo Triolite). In the δ 13C-HCO3 diagram, HCO3 content of the thermal spring shows an enriched value of δ 13CVPDB with respect to the cold spring and δ34S CDT values show that the sulphure has come different sources in cold and hot springs.
- Publication:
-
AGU Fall Meeting Abstracts
- Pub Date:
- December 2013
- Bibcode:
- 2013AGUFMED13A0762H
- Keywords:
-
- 1065 GEOCHEMISTRY Major and trace element geochemistry;
- 1831 HYDROLOGY Groundwater quality