Utilizing Yagi antennas in Lightning Mapping Array to detect low-power VHF signals
Abstract
The New Mexico Tech VHF Lightning Mapping Array (LMA) being operated at Langmuir Laboratory in central New Mexico is comprised of 22 time-of-arrival stations spanning an area approximately 60 km north-south and 45 km east-west. Nine stations are at high altitude (3.1-3.3 km GPS) over a 3 x 4 km area around the mountain-top Laboratory, and 13 are on the surrounding plains and the Rio Grande valley, at altitudes between 1.4 and 2.2 km. Each station utilizes a vertical half-wave dipole antenna having about 2 dBi gain at horizontal incidence and providing omnidirectional azimuthal coverage. In 2012, four additional stations utilizing higher gain (11 dBi) Yagi antennas were co-located at four of the surrounding sites within 10-15 km of the laboratory, each pointed over the laboratory area. The purpose was to test if directional antennas would improve detection of low-power sources in the laboratory vicinity, such as those associated with positive breakdown or weak precursor events. The test involved comparing the number and quality of radiation sources obtained by processing data from two sets of stations: first for a 17-station network in which all stations were omnidirectional, and then for the same network with Yagi-based measurements substituted in place of the omni measurements at the four co-located stations. For radiation events located in both datasets, the indicated source power values from Yagi stations were typically 5-10 dB greater than their omnidirectional counterpart for sources over or near the laboratory, consistent with the 9 dB difference in on-axis gain values. The difference decreased through zero and to negative values with increasing distance from the laboratory, confirming that it was due to the directionality of the Yagi antennas. It was expected that a network having Yagi antennas at all outlying stations would improve the network's detection of lower power sources in its central region. Rather, preliminary results show that there is no significant difference in the number of located sources, and that there is no significant difference in flash structure details for either positive or negative breakdown channels. This may be due to a need for more outlying Yagi stations, but could also be the case if in fact the close, high altitude stations are primarily responsible for detection of low power sources, i.e. detection of low power sources does not require or does not benefit much from outlying stations. Furthermore, the ability to detect low power sources may be fundamentally limited due to masking by strongly radiating negative breakdown. Work is continuing on analyzing the measurements.
- Publication:
-
AGU Fall Meeting Abstracts
- Pub Date:
- December 2013
- Bibcode:
- 2013AGUFMAE13A0324T
- Keywords:
-
- 3324 ATMOSPHERIC PROCESSES Lightning;
- 3394 ATMOSPHERIC PROCESSES Instruments and techniques;
- 0604 ELECTROMAGNETICS Antenna arrays;
- 6994 RADIO SCIENCE Instruments and techniques