Long-lived large-scale ground deformation caused by a buoyantly rising magma resevoir
Abstract
Recent InSAR studies have identified a constant, long-wavelength ground deformation pattern, comprising a central uplift and peripheral subsidence, centred on Uturuncu volcano in the Altiplano Puna Volcanic Complex of the Central Andes. This so-called 'sombrero uplift' has been consistent over the time scales of InSAR observations (1992-2010); however, it is unclear how long this deformation has persisted over the history of Uturuncu. Here we constrain the duration and causes of the ground deformation through a combination of available geodetic data, geomorphological studies and numerical modelling. GPS data from re-occupation of a nearby levelling line show that the observed ground deformation from 1965 to 2012 is compatible with the extent and the rate observed with InSAR, and thus suggests that the 'sombrero uplift' may have been constant for at least 50 years. In addition, from geomorphological measurements using shorelines from nearby lakes as inclinometers, we conclude that the total uplift of Uturuncu has not been more than 30 m, or that the constant ongoing uplift cannot have been active for more than 3000 years. Following our recent geophysical studies in the area, we explore the possibility that the observed ground deformation is caused by a rising felsic diapir and test this hypothesis numerically to show that the process is viable under these specific conditions, and accounts for the observed uplift rate. Our findings have significant implications for volcanologists inferring the characteristics of magma reservoirs from ground deformation data as it offers an alternative explanation of the causes driving ground deformation, and the growth and failure of magma reservoirs in a hot multiphase viscous crust.
- Publication:
-
AGU Fall Meeting Abstracts
- Pub Date:
- December 2013
- Bibcode:
- 2013AGUFM.V51E2742D
- Keywords:
-
- 8439 VOLCANOLOGY Physics and chemistry of magma bodies;
- 8122 TECTONOPHYSICS Dynamics: gravity and tectonics;
- 8494 VOLCANOLOGY Instruments and techniques