Stable strontium mass dependent isotopic fractionation in authigenic continental barite
Abstract
The use of stable Sr-isotopic measurements (δ88Sr) of barite precipitates from terrestrial environments will be evaluated as a new geochemical proxy to identify mode of barite mineralization for use in earth science applications including understanding similar ancient barite deposits. Stable Sr-isotope measurements of barite and waters from three warm artesian springs in the continental United States where barite precipitates under a variety of conditions (e.g., temperatures, saturation states, microbial communities) will be presented. Initial results show a large range of fractionation factors during barite precipitation from aqueous solution between and within some of the field sites of >0.6 permil. The waters range from δ88Sr = -0.04 to +0.50 permil. The solid barite precipitates that have been separated from the bulk sediment using a modified sequential leaching procedure range from δ88Sr = -0.43 to +0.16 permil. Average 2σ for the isotopic analyses is 0.05 permil, similar to previously published estimates for error on this measurement by MC-ICPMS. Barite is a highly stable and widely-distributed mineral found in magmatic, metamorphic, and sedimentary rocks (of all ages), as well as in soils, aerosol dust, and extraterrestrial material. Establishing the controlling parameters of stable Sr-isotopic fractionation in barite is important as barite may be an ideal vehicle to address critical questions in the earth sciences, including early earth biogeochemistry.
- Publication:
-
AGU Fall Meeting Abstracts
- Pub Date:
- December 2013
- Bibcode:
- 2013AGUFM.V51A2635G
- Keywords:
-
- 0454 BIOGEOSCIENCES Isotopic composition and chemistry;
- 1041 GEOCHEMISTRY Stable isotope geochemistry;
- 8424 VOLCANOLOGY Hydrothermal systems;
- 0463 BIOGEOSCIENCES Microbe/mineral interactions