Monitoring lava dome changes by means of differential DEMs from TanDEM-X interferometry: Examples from Merapi, Indonesia and Volcán de Colima, Mexico
Abstract
Estimating the amount of erupted material during a volcanic crisis is one of the major challenges in volcano research. One way to do this and to discriminate between juvenile and non-juvenile fraction is to assess topographic changes before and after an eruption while using area-wide 3D data. LiDAR or other airborne systems may be a good source, but the recording fails when clouds due to volcanic activity obstruct the sight. In addition, costs as well as logistics are high for local observatories. When dealing with dome-building volcanoes, acquiring the data gets further complicated. As the volcano dome can change rapidly in active phases, it is nearly impossible to collect data at the right time. However, when dealing with gross volume change estimates, at least two data sets - taken directly before and after the eruption - are essential. The innovative German Earth observation mission TanDEM-X (TerraSAR-X add-on for Digital Elevation Measurement) is of great importance to overcome some of these problems. The two almost identical radar satellites TerraSAR-X and TanDEM-X fly in a close formation, thus recording images of the same place on the Earth surface at the same time (bistatic mode). As the radar signal penetrates clouds, digital elevation models (DEMs) of the area of investigation can be generated without problems even with cloud cover. A time series analysis of the differential DEMs therefore opens the possibility to assess volume changes at active lava domes. We choose Merapi in Indonesia and Volcán de Colima in Mexico as test sites. Both volcanoes reside in a state of long term effusive eruption, interrupted every few years by phases of dome destruction, generation of pyroclastic flows and deposition of volcanic material. The availability of extensive ground truth data for both test sites further enables to validate the spaceborne data and results. Here, we analyze lava dome changes due to the hazardous Merapi 2010 eruption. We show a series of DEMs derived by TanDEM-X interferometry taken before and after the eruption. Our results reveal that the eruption had led to a topographic change of up to 200 m in the summit area of Merapi. We further show the ability of the TanDEM-X data to observe much smaller topographic changes using Volcán de Colima as second test site. An explosion at the crater rim signaled the end of magma ascent in June 2011. The bistatic TanDEM-X data give important information on this explosion as we can observe topographic changes of up to 20 m and less in the summit area when comparing datasets taken before and after the event. We further analyzed datasets from the beginning of the year 2013 when Colima got active again after a dormant period. Our results indicate that repeated DEMs with great detail and good accuracy are obtainable, enabling a quantitative estimation of volume changes in the summit area of the volcano. As the TanDEM-X mission is an innovative mission, the present study serves as a test to employ data of a new satellite mission in volcano research. An error analysis of the DEMs to evaluate the volume quantifications was therefore also conducted.
- Publication:
-
AGU Fall Meeting Abstracts
- Pub Date:
- December 2013
- Bibcode:
- 2013AGUFM.V43B2869K
- Keywords:
-
- 8419 VOLCANOLOGY Volcano monitoring;
- 8494 VOLCANOLOGY Instruments and techniques;
- 1240 GEODESY AND GRAVITY Satellite geodesy: results