Characteristics of Offshore Hawai';i Island Seismicity and Velocity Structure, including Lo';ihi Submarine Volcano
Abstract
The Island of Hawai';i is home to the most active volcanoes in the Hawaiian Islands. The island's isolated nature, combined with the lack of permanent offshore seismometers, creates difficulties in recording small magnitude earthquakes with accuracy. This background offshore seismicity is crucial in understanding the structure of the lithosphere around the island chain, the stresses on the lithosphere generated by the weight of the islands, and how the volcanoes interact with each other offshore. This study uses the data collected from a 9-month deployment of a temporary ocean bottom seismometer (OBS) network fully surrounding Lo';ihi volcano. This allowed us to widen the aperture of earthquake detection around the Big Island, lower the magnitude detection threshold, and better constrain the hypocentral depths of offshore seismicity that occurs between the OBS network and the Hawaii Volcano Observatory's land based network. Although this study occurred during a time of volcanic quiescence for Lo';ihi, it establishes a basis for background seismicity of the volcano. More than 480 earthquakes were located using the OBS network, incorporating data from the HVO network where possible. Here we present relocated hypocenters using the double-difference earthquake location algorithm HypoDD (Waldhauser & Ellsworth, 2000), as well as tomographic images for a 30 km square area around the summit of Lo';ihi. Illuminated by using the double-difference earthquake location algorithm HypoDD (Waldhauser & Ellsworth, 2000), offshore seismicity during this study is punctuated by events locating in the mantle fault zone 30-50km deep. These events reflect rupture on preexisting faults in the lower lithosphere caused by stresses induced by volcano loading and flexure of the Pacific Plate (Wolfe et al., 2004; Pritchard et al., 2007). Tomography was performed using the double-difference seismic tomography method TomoDD (Zhang & Thurber, 2003) and showed overall velocities to be slower than the regional velocity model (HG50; Klein, 1989) in the shallow lithosphere above 16 km depth. This is likely a result of thick deposits of volcaniclastic sediments and fractured pillow basalts that blanket the southern submarine flank of Mauna Loa, upon which Lo';ihi is currently superimposing (Morgan et al., 2003). A broad, low-velocity anomaly was observed from 20-40 km deep beneath the area of Pahala, and is indicative of the central plume conduit that supplies magma to the active volcanoes. A localized high-velocity body is observed 4-6 km deep beneath Lo';ihi's summit, extending 10 km to the North and South. Oriented approximately parallel to Lo';ihi's active rift zones, this high-velocity body is suggestive of intrusion in the upper crust, similar to Kilauea's high-velocity rift zones.
- Publication:
-
AGU Fall Meeting Abstracts
- Pub Date:
- December 2013
- Bibcode:
- 2013AGUFM.V41B2779M
- Keywords:
-
- 7270 SEISMOLOGY Tomography;
- 7215 SEISMOLOGY Earthquake source observations;
- 8400 VOLCANOLOGY