Helium enrichment during convective carbon dioxide dissolution
Abstract
Motivated by observed variations of the CO2/He ratios in natural carbon dioxide (CO2) reservoirs, such as the Bravo Dome field in northeastern New Mexico, we have performed laboratory experiments equilibrating gas mixtures containing Helium (He) and CO2 with water, at close to ambient conditions in a closed system. The experimental design allows for continuous measurement of headspace pressure as well as timed interval measurements of the CO2/He ratios and the δ13C value of CO2 in the headspace. Results from three dissolution experiments are reported: 1) pure Helium system, 2) 98% CO2 + 2% Nitrogen system, and 3) 97% CO2 and 3% Helium. Final equilibrated experimental results are compared to theoretical results obtained using Henry's Law relationships. The evolution of the amount of dissolved CO2 computed from gas pressure and gas compositions are in good agreement with Henry's Law relationships. For example, the CO2 + N2 system was initially pressurized with pure CO2 to 1323 mbar and after six days it equilibrated to a measured headspace pressure of 596 mbar. This compares very well with a calculated equilibrium headspace pressure of 592 mbar for this system. The CO2 + He system was pressurized to 1398 mbar CO2 and after six days equilibrated to a measured headspace pressure of 397 mbar. This measured pressure is slightly higher than the predicted equilibrated headspace pressure of 341 mbar, indicating a possible leak in the system during this particular experiment. In both experiments the initial pH of the water was 9.3 and the final equilibrated pH was 5.4. The δ13C value of equilibrated headspace CO2 was within 0.25‰ of its starting δ13C value, demonstrating insignificant carbon isotope fractionation at low pH. Measured Helium/ CO2 ratios throughout the CO2+Helium experiment preserve a non-linear trend of increasing He/ CO2 ratios through time that correlate very well with the measured pressure drop from CO2 dissolution. This indicates that gas composition, in particular the He/ CO2-ratio, can be used to infer the amount of dissolved CO2 in the field where pressure evolution is not available. Our experiments show that the rate of dissolution is determined by convective mass transfer in the brine. Convective transport is driven by the increase of water density with increasing CO2 saturation. However, unlike previous experiments with analog systems we do not observe a constant dissolution rate. This is due to the continued drop in gas pressure that continuously reduces the equilibrium aqueous CO2 concentration and with it the driving force for convection. This feed back may significantly reduce the magnitude of solubility trapping that can be expected during geological CO2 storage.
- Publication:
-
AGU Fall Meeting Abstracts
- Pub Date:
- December 2013
- Bibcode:
- 2013AGUFM.V41A2769L
- Keywords:
-
- 1009 GEOCHEMISTRY Geochemical modeling;
- 1041 GEOCHEMISTRY Stable isotope geochemistry;
- 1805 HYDROLOGY Computational hydrology