Carbon recycling in ophiolite-hosted carbonates, Oman-UAE
Abstract
Large-scale surface and subsurface freshwater carbonate deposits of probable Quaternary age have formed on the Oman-UAE ophiolite. Here, serpentinisation reactions in ultramafic rocks have produced calcite and magnesite. These carbonates are frequently cited as examples of natural atmospheric CO2 sequestration, but the possibility of carbon recycling has not been addressed. The aim of this study is to assess the degree of atmospheric CO2 being incorporated into carbonates versus that which has been recycled from alternative sources such as soil CO2, or limestones that underlie the ophiolite. This has been determined through δ13C/δ18O, 87Sr/86Sr and 14C analysis of all major carbonate lithofacies identified. Our analyses of modern carbonate crusts forming on the surface of stagnant hyperalkaline (pH >11) waters show highly depleted δ13C and δ18O values (-25.5‰ ×0.5 PDB and -16.8‰ ×0.5 PDB respectively). This depletion has been attributed to a kinetic isotope effect occurring during atmospheric CO2 exchange with Ca(OH)2 hyperalkaline waters [1]. By comparison, inactive travertine deposits show a large range in δ13C (-10.5 to -21.8‰ PDB) which lies on a trajectory from the composition of modern crusts towards bicarbonate fluids in equilibrium with soil CO2. We interpret this trend as being produced by the mixing of different carbon sources, either at the time of formation or during later alteration. Modern carbonates and inactive travertines also have 87Sr/86Sr ratios and Sr concentrations similar to Cretaceous and Tertiary limestones which surround the ophiolite, whilst subsurface veins also display 87Sr/86Sr ratios similar to these Cretaceous limestones. Carbon recycling can also be determined with 14C. Modern atmospheric CO2 has a global average of 105-106% modern 14C (pMC), therefore freshwater carbonates forming solely from atmospheric CO2 would be expected to contain >100 pMC. However, modern carbonates display varied results from 94.5-101.4 pMC. Low values could be caused by meteoric waters incorporating 14C 'dead' carbon through the dissolution of limestones and/or uptake of soil CO2. This 'dead' carbon would then be assimilated into veins and surface deposits, offsetting pMC values. Inactive travertines show significant fluctuations in 14C values within a single hand sample, where stratigraphically younger samples give older radiocarbon 'ages' outside of error. These fluctuations may have been caused by the presence of limestone sourced 'dead' carbon in waters at time of formation, surface runoff containing soil CO2 or by later recrystallisation. Isotopic evidence indicates that mixing of contemporary atmospheric carbon and recycled older carbon has taken place during the on-going carbonation of the Oman-UAE ophiolite sequence. Failure to account for this recycled carbon could lead to inaccurate estimates of natural CO2 sequestration rates. References [1] Clark, I.D. and Fontes, J. (1990) Palaeoclimatic reconstruction in Northern Oman based on carbonates from hyperalkaline groundwaters. Quaternary Res, 33, 320-336
- Publication:
-
AGU Fall Meeting Abstracts
- Pub Date:
- December 2013
- Bibcode:
- 2013AGUFM.V34A..08S
- Keywords:
-
- 1041 GEOCHEMISTRY Stable isotope geochemistry;
- 1040 GEOCHEMISTRY Radiogenic isotope geochemistry;
- 1030 GEOCHEMISTRY Geochemical cycles