Metal-silicate partitioning of Co, Ni, V, Cr, Si, and O up to 100 GPa and 5500 K: Implications for core formation
Abstract
During core formation, metal and silicate of accreted bodies equilibrated with the proto-Earth in a series of partitioning reactions, characterized by average (or time-intregrated) partition coefficients that can be calculated assuming a bulk Earth that is chondritic in nonvolatile elements [e.g. 1]. Comparisons to experimentally-measured partition coefficients allow constraints on the time-integrated conditions of core-mantle equilibration [e.g. 2-7], providing valuable input into more complex chemical models of Earth's evolution [8]. Partitioning has been studied extensively in the multi-anvil press [e.g. 3, 7], but very few studies extend to pressures above ~25 GPa [e.g. 2, 5-6]. In this study, we measure the metal-silicate partitioning of Co, Ni, V, Cr, Si, and O at higher pressures and temperatures. Thin foils of Fe-rich alloy doped with trace elements were loaded in a diamond anvil cell between layers of (Mg,Fe)2SiO4. Samples were laser-heated to melt the metal and silicate. After decompression, samples were cut parallel to the compression axis into sections ~100 nm thick with a focused ion beam (FIB). Chemical analyses of all elements except oxygen in the coexisting metal, silicate, and oxide were performed using energy dispersive X-ray spectroscopy (EDXS) in a transmission electron microscope (TEM). Later, samples were further thinned by FIB to ~60 nm and analyzed by electron energy loss spectroscopy (EELS) in a TEM to determine the Fe/O ratio of the metal. Analysis was performed on a suite of six experiments from pressures of 25, 31, 43, 57, 58, and 100 GPa and temperatures above the silicate liquidus, up to 5500 K. Our results are generally consistent with the recent findings of [5-6], although our log(KD) values for cobalt are ~0.1-0.2 log units lower. Some of our experiments contain carbon in the metal which may affect the partitioning of some elements. The metal in the experiment from 100 GPa and 5500 K contains 9 wt% silicon and an estimated 11 wt% oxygen, which is a significantly higher percentage of light elements than the Earth's outer core is thought to contain [e.g. 1]. Using our results, we develop a model for metal/silicate exchange during core formation, the light element composition of the core, and possible chemical reactions at the core-mantle boundary. [1] McDonough, W.F. (2003) Treatise on Geochemistry, Vol. 2, pp 547-568. [2] Bouhifd, M.A. and A.P. Jephcoat (2011) Earth Planet. Sci. Lett. 307, 341-348. [3] Mann, U., D.J. Frost, and D.C. Rubie (2009) Geochim. Cosmochim. Acta 73, 7360-7386. [4] Righter, K. et al. (2010) Earth Planet. Sci. Lett. 291, 1-9. [5] Siebert, J. et al. (2012) Earth Planet. Sci. Lett. 321-322, 189-197. [6] Siebert, J. et al. (2013) Science 339, 1194-1197. [7] Wade, J., and B.J. Wood (2005) Earth Planet. Sci. Lett. 236, 78-95. [8] Rubie, D.C. et al. (2011) Earth Planet. Sci. Lett. 301, 31-42.
- Publication:
-
AGU Fall Meeting Abstracts
- Pub Date:
- December 2013
- Bibcode:
- 2013AGUFM.V33D2798F
- Keywords:
-
- 3924 MINERAL PHYSICS High-pressure behavior;
- 5455 PLANETARY SCIENCES: SOLID SURFACE PLANETS Origin and evolution;
- 3954 MINERAL PHYSICS X-ray;
- neutron;
- and electron spectroscopy and diffraction;
- 1015 GEOCHEMISTRY Composition of the core