Video Analysis of Eddy Structures from Explosive Volcanic Eruptions
Abstract
We present a method of analyzing turbulent eddy structures in explosive volcanic eruptions using high definition video. Film from the eruption of Sakurajima on 25 September 2011 was analyzed using a modified version of FlowJ, a Java-based toolbox released by National Institute of Health. Using the Lucas and Kanade algorithm with a Gaussian derivative gradient, it tracks the change in pixel position over a 23 image buffer to determine the optical flow. This technique assumes that the optical flow, which is the apparent motion of the pixels, is equivalent to the actual flow field. We calculated three flow fields per second for the duration of the video. FlowJ outputs flow fields in pixels per frame that were then converted to meters per second in Matlab using a known distance and video rate. We constructed a low pass filter using proper orthogonal decomposition (POD) and critical point analysis to identify the underlying eddy structure with boundaries determined by tracing the flow lines. We calculated the area of each eddy and noted its position over a series of velocity fields. The changes in shape and position were tracked to determine the eddy growth rate and overall eddy rising velocity. The eddies grow in size 1.5 times quicker than they rise vertically. Presently, this method is most successful in high contrast videos when there is little to no effect of wind on the plumes. Additionally, the pixel movement from the video images represents a 2D flow with no depth, while the actual flow is three dimensional; we are continuing to develop an algorithm that will allow 3D reprojection of the 2D data. Flow in the y-direction lessens the overall velocity magnitude as the true flow motion has larger y-direction component. POD, which only uses the pattern of the flow, and analysis of the critical points (points where flow is zero) is used to determine the shape of the eddies. The method allows for video recorded at remote distances to be used to study eruption dynamics of ash plumes.
- Publication:
-
AGU Fall Meeting Abstracts
- Pub Date:
- December 2013
- Bibcode:
- 2013AGUFM.V23C2834F
- Keywords:
-
- 8414 VOLCANOLOGY Eruption mechanisms and flow emplacement;
- 4490 NONLINEAR GEOPHYSICS Turbulence;
- 8428 VOLCANOLOGY Explosive volcanism