Mars Sulfur: A Review of Landed Mission Data (Invited)
Abstract
Sulfur (S) has been detected (1.0 - 36 wt. % SO3) in martian surface materials at the Viking, Pathfinder, Mars Exploration Rovers (MER), Phoenix, and Mars Science Laboratory (MSL) landing sites. The accumulation of S at these landing sites is attributed to the hyperarid martian climate that inhibits dissolution and leaching of surface S into the subsurface. The S cycle involving sources, sinks, and the processes involved in redistributing S after initial deposition are not well constrained. This work reviews the state of knowledge of S as derived from landed missions. Results suggest that aqueous processes have been involved in the S cycling suggesting that conditions may have been favorable microbiology. Chemical data and the apparent oxidizing condition of the soil suggest that the Viking and Pathfinder soils consist of Mg-sulfate and possible Fe-sulfate. Sulfur-rich soils (up to 36 wt. % SO3) in Gusev crater examined by MER Spirit consist of mixed Fe3+)-, Mg- , and Ca-sulfates. Meridiani Plenum explored by MER Opportunity is dominated by outcrops of mixed Fe-, Mg- and Ca-sulfate while rocks stratigraphically below this at Endeavor Crater contain veins composed of calcium sulfate. Soil solutions evaluated at the Phoenix Landing site were consistent with the presence of Mg-sulfate, while the thermal and evolved gas data collected from this site suggested that Ca-sulfate could also be present. X-ray diffraction analysis of the Rocknest sand shadow in Gale Crater detected anhydrite (CaSO4)(~1 wt.%) The source of S on the martian surface may be derived from S-bearing volcanic aerosols and/or from subsurface hydrothermal fluids that have interacted with sulfide minerals in the crust. For example, volcanic derived S aerosols in water or ice have been proposed to alter basaltic material where acidic fluids evaporated or ice sublimed leaving behind the large-scale Meridiani sulfate outcrops. On the other hand, local small-scale hydrothermal processes may be responsible for locally concentrated S in the Paso Robles soils in the Columbia Hills encountered by Spirit. Subsequent to deposition, redistribution of S by aqueous or eolian processes is possible. Physical erosion of S deposits detected elsewhere on Mars followed by eolian redistribution of S bearing dust could contribute to soil S. Downward water flow has been proposed to have leached sulfates in select Gusev soils and may be involved in sulfate redistribution in the Meridiani deposits. Sources of downward water flow could be caused by percolating snow melt that occurs during periods of high obliquity. Subsequent to deposition, groundwater interactions are also proposed as a mechanism for the redistributed the Meridiani sulfates. The evaluation of martian of the S cycle should shed light on the past martian climate and indicate the types of aqueous geochemical conditions that were encountered by potential microbiology. Aqueous processes involved the S cycle appear to span a wide pH range from acidic (Fe-sulfates) to more neutral (Fe-sulfate limiting). This range of pH suggests that martian microbiology, if ever present, was diverse and consisted of species that thrived in low pH solutions (e.g., acidophilles) along with species that thrived in more neutral pH solutions.
- Publication:
-
AGU Fall Meeting Abstracts
- Pub Date:
- December 2013
- Bibcode:
- 2013AGUFM.V21A2699S
- Keywords:
-
- 1042 GEOCHEMISTRY Mineral and crystal chemistry;
- 1060 GEOCHEMISTRY Planetary geochemistry;
- 6225 PLANETARY SCIENCES: SOLAR SYSTEM OBJECTS Mars;
- 3620 MINERALOGY AND PETROLOGY Mineral and crystal chemistry