Structure and fault mechanics of the shallow rupture zone of the 2011 Tohoku-oki earthquake, IODP expedition 343/343T (Invited)
Abstract
The Japan Trench convergent margin produces frequent large interplate earthquakes greater than M7.5, and is known to display the primary characteristics of non-accretionary margins. The 2011 Mw 9.0 Tohoku-oki earthquake demonstrates the capability of this margin to rupture the full extent of the seismogenic zone and up-dip to the trench axis in a single great event. A variety of observations indicate that the slip magnitude of this rupture increased towards the trench, with 50+ m of slip occurring at the ~20-km-wide frontal prism of accreted sediments and lower trench slope. IODP expedition 343/343T (JFAST) was designed to address fundamental questions of earthquake physics through rapid-response drilling, but also provides new information on sediment accretion and the architecture of the frontal prism. The JFAST drill site is located above a horst block in the subducting plate and 6 km landward from the trench axis; three boreholes were drilled through the prism and across the plate-boundary. Palinspastic reconstruction of the prism structure based on a seismic line through the drill site, logging data, and lithologic and structural observations of core samples document a single dominant décollement that accommodated almost all of the interplate displacement (~3.2 km) at the drill site. The décollement is located in pelagic clay near the base of the incoming sediment section of the subducting plate, and maintains this stratigraphic position trenchward until it enters the graben below the trench axis where it cuts down-section to follow the basal strata. The structure indicates about half the incoming sediment is offscraped onto the leading edge of the prism but similar amount of sediment may be removed from the base of the frontal prism associated with progressive amplification of horsts and grabens more landward below the prism. The localization of nearly all the interplate displacement to a single narrow décollement composed of sheared pelagic clay indicates the décollement is relatively weak over geologic time. Borehole measurements of temperature across the plate boundary confirm the Tohoku earthquake ruptured the décollement and, consistent with results of high-speed friction experiments on sheared clay, that the décollement is extremely weak during seismic slip. These results, combined with borehole data indicating that the current in situ stress is approximately lithostatic, support the hypothesis that dynamic weakening of wet clay at seismic slip rates favor earthquake rupture propagation to shallow depths even though the frictional properties of wet clay at low slip rates prohibit the nucleation of slip instabilities. Core samples of sheared clay from the décollement are being analyzed to identify earthquake-related microstructures and determine the mechanisms of dynamic weakening during seismic slip.
- Publication:
-
AGU Fall Meeting Abstracts
- Pub Date:
- December 2013
- Bibcode:
- 2013AGUFM.T52B..01C
- Keywords:
-
- 8104 TECTONOPHYSICS Continental margins: convergent;
- 7240 SEISMOLOGY Subduction zones;
- 8004 STRUCTURAL GEOLOGY Dynamics and mechanics of faulting;
- 8163 TECTONOPHYSICS Rheology and friction of fault zones