Oxygen isotope geospeedometry by SIMS
Abstract
Geospeedometry, a discipline closely related and complimentary to thermochronology, exploits the phenomenon of diffusion in order to extract rate and duration information for segments of a rock's thermal history. Geospeedometry data, when anchored in absolute time by geochronologic data, allow for the construction of detailed temperature-time paths for specific terranes and geologic processes. We highlight the developing field of SIMS-based oxygen isotope geospeedometry with an application from granulites of the Adirondack Mountains (New York) and discuss potential future applications based on a recently updated and expanded modeling tool, the Fast Grain Boundary diffusion program (FGB; Eiler et al. 1994). Equilibrium oxygen isotope ratios in minerals are a function of temperature and bulk rock composition. In dynamic systems, intragrain oxygen isotope zoning can develop in response to geologic events that affect the thermal state of a rock and/or induce recrystallization, especially tectonic deformation and fluid infiltration. As an example, titanite grains from late-Grenville shear zones in the northwestern Adirondack Mountains exhibit a range of δ18O zoning patterns that record post-peak metamorphic cooling, episodic fluid infiltration, and deformation-facilitated recrystallization. Many titanite grains preserve smooth, core-to-rim decreasing, diffusional δ18O profiles, which are amenable to diffusion modeling. FGB models that best fit the measured δ18O profiles indicate cooling from ~700-500°C in just 2-5 m.y., a rapid thermal change signaling the final gravitational collapse of the late-Grenville orogen. Titanite can also be utilized as a U-Pb chronometer, and comparison of δ18O and U-Pb age zoning patterns within the Adirondack titanites pins the episode of rapid cooling inferred from the δ18O record to some time between 1054 and 1047 Ma. The expanded capabilities of FGB also allow for evaluation of a range of heating-cooling histories for the Adirondack granulites. Diffusional δ18O zoning profiles in titanite are best fit by complete re-equilibration at temperatures above 675 °C followed by rapid, monotonic cooling; FGB models that include only partial re-equilibration and/or episodes of reheating along the retrograde path do not fit the observed δ18O profiles. Beyond the Adirondack titanite example, FGB can be used as a predictive tool to target either specific minerals within a rock or specific rock types within a terrane for oxygen isotope geospeedometry and zoning studies. FGB generates predictions of δ18O zoning for all minerals in a rock of a given mineralogy and heating-cooling history. Different minerals within the same rock will record different segments of the thermal and fluid history based on their individual diffusivities, phase stabilities, and propensities for deformation-induced/facilitated recrystallization. It should therefore be possible to extract long thermal histories from a single sample by measuring oxygen isotope zoning profiles across several minerals with different partial retention zones for oxygen.
- Publication:
-
AGU Fall Meeting Abstracts
- Pub Date:
- December 2013
- Bibcode:
- 2013AGUFM.T43F2736B
- Keywords:
-
- 1140 GEOCHRONOLOGY Thermochronology;
- 1041 GEOCHEMISTRY Stable isotope geochemistry;
- 1094 GEOCHEMISTRY Instruments and techniques;
- 8110 TECTONOPHYSICS Continental tectonics: general