(U-Th)/He dating and He diffusion in calcite from veins and breccia
Abstract
Knowledge of He retention in crystalline calcite is mandatory to estimate the possibility of (U-Th)/He dating of calcite. To this aim, fault-filling calcite crystals from the Eocene/Oligocene Gondrecourt graben, Paris Basin, Eastern France, have been sampled, based on their relatively old, Eocene-Oligocene, precipitation age and cold thermal history (<40°C since precipitation). The samples were sorted into three main tectonic and morphological groups, including successively (1) micro-fracture calcites, (2) breccia and associated geodic calcites, and (3) vein and associated geodic calcites. (U-Th)/He dating of 63 calcite fragments yields ages dispersed from 0.2×0.02 to 35.8×2.7 Ma, as well as two older dates of 117×10 and 205×28 Ma (1s). These He ages correlate to grain chemistry, such as to Sr and ΣREE concentrations or (La/Yb)N ratios, and these correlations probably reflect the evolution of parent fluid. Only the oldest He ages are in agreement with the He-retentive character of calcite as determined by Copeland et al. (2007), and these ages were obtained for the most recently precipitated crystals. To better understand the large He-age scatter and why calcites precipitated earlier show younger ages, He diffusion experiments have been conducted on 10 Gondrecourt calcite fragments from 3 samples with He ages of 0.2 to 6 Ma. In addition, a crystallographic investigation by X-Ray Diffraction (XRD) performed on similar samples reveals that the crystal structure evolves with increasing temperature, showing with micro-cracks and cleavage opening. These XRD results indicate that, in fault-filling calcite, He retention is controlled by multiple diffusion domains (MDD, Lovera et al., 1991) with various sizes, and therefore, evolves through time with strong consequences on (U-Th)/He age. We thus interpret the Gondrecourt calcite (U-Th)/He age scatter of older samples as a consequence of cleavage opening due to a succession of calcite crystallization phases related to the deformation history. Finally, we propose that the crystallization age of a calcite crystal with a known thermal history can nevertheless be retrieved by the (U-Th)/He method provided the He diffusion pattern can be measured by careful step-heating degassing analysis. Copeland, P., Watson, E.B., Urizar, S.C., Patterson, D., Lapen, T.J., 2007. Alpha thermochronology of carbonates. Geochim. Cosmochim. Acta, 71: 4488-4511. Cros, A. Gautheron, C., Pagel, M., Berthet, P., Tassan-Got, L., Douville, E., Pinna-Jamme, R., Sarda, P., submitted GCA, He behavior in calcite filling viewed by (U-Th)/He dating, He diffusion and crystallographic studies. Lovera, O.M., Richter, F.M., Harrison, T.M., 1991. Diffusion domains determined by 39Ar released during step heating. Journal of Geophysical Research, 96: 2057-2069.
- Publication:
-
AGU Fall Meeting Abstracts
- Pub Date:
- December 2013
- Bibcode:
- 2013AGUFM.T43F2715G
- Keywords:
-
- 1140 GEOCHRONOLOGY Thermochronology