New insights on He diffusion in apatite and implication for (U-Th)/He thermochronology (Invited)
Abstract
The apatite (U-Th)/He (AHe) system has rapidly become a very popular thermochronometer to constrain exhumation and relief evolution in a variety of geological contexts, as it allows dating and estimating the amount of denudation. However, the interpretation of AHe data depends on a precise knowledge of He diffusion in apatite, which is sensible in the 55 to 120°C range. Several studies suggest that radiation damage generated by U and Th decay can create traps for He atoms, increasing He retention as a function of the number of traps. The radiation damage also anneals with temperature and the amount of damage in an apatite crystal will be a balance between production and annealing, controlled by U-Th concentration, grain chemistry and thermal history (Shuster et al., 2006; Flowers et al., 2009; Gautheron et al., 2009; 2013). However these models are not well constrained and do not fully explain the mechanism of He retention. In order to have a deeper insight on this issue, multidisciplinary studies on apatite combining diffusion experiments by Elastic Recoil Diffusion Analysis (ERDA) with diffusion calculation Density Functional Theory (DFT) were performed. ERDA experiments were conducted on different macro-crystals, and we probed the shape of a He profile implanted into a planar and polished surface of the crystal. The helium profile evolves with temperature and allows the quantification of He diffusivity. Additionally, DFT calculations of a crystal of apatite have been run to find the favored paths of a helium atom between interstitial sites, leading to a computation of the activation energy and the diffusion coefficient. Crystals with different F and Cl compositions, in similar proportion as natural ones, have been investigated and show chemical variations due to steric effects. Using ERDA and DFT approaches, we demonstrate that in addition to the damage, the grain chemistry strongly impacts He diffusivity and needs to be taken into account. Shuster, D., Flowers, R., Farley, K.A., 2006. The influence of natural radiation damage on helium diffusion kinetics in apatite. Earth and Planetary Science Letters 249, 148-161. Flowers, R., Ketcham, R.A., Shuster, D., Farley, K.A., 2009. Apatite (U-Th)/He thermochronology using a radiation damage accumulation and annealing model. Geochimica et Cosmochimica Acta 73, 2347-2365. Gautheron, C., Tassan-got, L., Barbarand, J., Pagel, M., 2009. Effect of alpha-damage annealing on apatite (U-Th)/He thermochronology. Chemical Geology 266, 166-179. Gautheron, C., Barbarand, J., Ketcham R.A., Tassan-got, L., van der Beek, P., Pagel, M., Pinna-Jamme, R., Couffignal, F., Fialin, M., 2013. Chemical influence on a-recoil damage annealing in apatite: implications for (U-Th)/He dating. Chemical Geology 351, 257-267.
- Publication:
-
AGU Fall Meeting Abstracts
- Pub Date:
- December 2013
- Bibcode:
- 2013AGUFM.T42C..02G
- Keywords:
-
- 1140 GEOCHRONOLOGY Thermochronology