Ductile bookshelf faulting: A new kinematic model for Cenozoic deformation in northern Tibet
Abstract
It has been long recognized that the most dominant features on the northern Tibetan Plateau are the >1000 km left-slip strike-slip faults (e.g., the Atyn Tagh, Kunlun, and Haiyuan faults). Early workers used the presence of these faults, especially the Kunlun and Haiyuan faults, as evidence for eastward lateral extrusion of the plateau, but their low documented offsets--100s of km or less--can not account for the 2500 km of convergence between India and Asia. Instead, these faults may result from north-south right-lateral simple shear due to the northward indentation of India, which leads to the clockwise rotation of the strike-slip faults and left-lateral slip (i.e., bookshelf faulting). With this idea, deformation is still localized on discrete fault planes, and 'microplates' or blocks rotate and/or translate with little internal deformation. As significant internal deformation occurs across northern Tibet within strike-slip-bounded domains, there is need for a coherent model to describe all of the deformational features. We also note the following: (1) geologic offsets and Quaternary slip rates of both the Kunlun and Haiyuan faults vary along strike and appear to diminish to the east, (2) the faults appear to kinematically link with thrust belts (e.g., Qilian Shan, Liupan Shan, Longmen Shan, and Qimen Tagh) and extensional zones (e.g., Shanxi, Yinchuan, and Qinling grabens), and (3) temporal relationships between the major deformation zones and the strike-slip faults (e.g., simultaneous enhanced deformation and offset in the Qilian Shan and Liupan Shan, and the Haiyuan fault, at 8 Ma). We propose a new kinematic model to describe the active deformation in northern Tibet: a ductile-bookshelf-faulting model. With this model, right-lateral simple shear leads to clockwise vertical axis rotation of the Qaidam and Qilian blocks, and left-slip faulting. This motion creates regions of compression and extension, dependent on the local boundary conditions (e.g., rigid Tarim vs. eastern China moving eastward relative to Eurasia), which results in the development of thrust and extensional belts. These zones heterogeneously deform the wall-rock of the major strike-slip faults, causing the faults to stretch (an idea described by W.D. Means 1989 GEOLOGY). This effect is further enhanced by differential fault rotation, leading to more slip in the west, where the effect of India's indentation is more pronounced, than in the east. To investigate the feasibility of this model, we have examined geologic offsets, Quaternary fault slip rates, and GPS velocities, both from existing literature and our own observations. We compare offsets with the estimated shortening and extensional strain in the wall-rocks of the strike-slip faults. For example, if this model is valid, the slip on the eastern segment of the Haiyuan fault (i.e., ~25 km) should be compatible with shortening in the Liupan Shan and extension in the Yinchuan graben. We also present simple analogue model experiments to document the strain accumulated in bookshelf fault systems under different initial and boundary conditions (e.g., rigid vs. free vs. moving boundaries, heterogeneous or homogenous materials, variable strain rates). Comparing these experimentally derived strain distributions with those observed within the plateau can help elucidate which factors dominantly control regional deformation.
- Publication:
-
AGU Fall Meeting Abstracts
- Pub Date:
- December 2013
- Bibcode:
- 2013AGUFM.T33D..02Z
- Keywords:
-
- 8111 TECTONOPHYSICS Continental tectonics: strike-slip and transform;
- 8108 TECTONOPHYSICS Continental tectonics: compressional;
- 8110 TECTONOPHYSICS Continental tectonics: general