Interseismic deformation along the Philippine Fault system and Manila subduction zone
Abstract
Southern Taiwan and Luzon is bounded between the Sunda plate and the Philippine Sea plate. The Philippine Sea plate converges obliquely with the Sunda plate with a rate of 50-90 mm/yr and results in a major sinistral strike-slip fault, the Philippine fault, extending 1300 km from Luzon to Mindanao. Using GPS data collected between 2000 and 2013 as well as a block modeling approach, we decompose the crustal motion into multiple rotating blocks, homogeneous intrablock strain, and the elastic deformation due to fault slip at block boundaries. Our preferred model composed of 9 blocks, produced a mean residual velocity of 3.1 mm/yr at 92 GPS stations. The estimated slip rates on the Philippine fault increase toward the south, from ~10 mm/yr at latitude 17°N to ~40 mm/yr at latitude 15°N. Estimated slip rates on the Philippine fault are higher than the long-term geological slip rates of 9-17 mm/yr, partly due to the postseismic deformation of the 1990 Ms 7.9 Luzon earthquake. Along the Manila subduction zone, estimated slip rates are ~70 mm/yr on the northern segment (offshore SW Taiwan, 21°N~22.5°N), ~10 mm/yr on the central segment (17°N~20°N), and 20 mm/yr on the southern segment (14°N~17N). High plate coupling ratios is inferred at shallow depths on the northern Manila subduction zone, although the resolution is poor due to sparse GPS data. The central segment is likely to be creeping and the southern segment is possibly partially locked.
- Publication:
-
AGU Fall Meeting Abstracts
- Pub Date:
- December 2013
- Bibcode:
- 2013AGUFM.T13D2562H
- Keywords:
-
- 8104 TECTONOPHYSICS Continental margins: convergent;
- 1209 GEODESY AND GRAVITY Tectonic deformation