Pressure-temperature history of the Brooks Range and Seward Peninsula, Alaska HP-LT units and geodynamic implications
Abstract
Metamorphic rocks in the inner zones of mountain belts constitute a marker of vertical movements within orogenic wedges, themselves controled by balance between boundary conditions and volume forces. They provide key evidence for paleogeographic and tectonic reconstruction of convergence zones. In the Arctic, the Amerasian basin opened in cretaceous time and evolved in the upper plate of the Pacific subduction system. The tectonic evolution of the Brooks Range, northern Alaska, is a key issue for understanding possible coupling between these two dynamics. HP-LT metamorphic rocks, now exposed in the Schist belt, Brooks Range, and the Nome Complex, Seward Peninsula, were brought to the surface during Early Cretaceous to Paleocene time. The processes responsible for their exhumation (syn-collisional nappe-stacking or post-collisional extensional detachment) are still a matter of debate, and have direct implications in terms of orogenic boundary conditions and coupling between subduction processes (to the south) and basin response (to the north; the North Slope). Systematic thermometry via Raman Spectrometry (RSCM) on carbonaceous material from regional transects in the Schist Belt and the Seward Peninsula as well as pseudosections calculations allow the determination of units with contrasting pressure-temperature histories and a comparison of thermal evolution of the two areas. Geodynamic implications of their exhumation is then discussed.
- Publication:
-
AGU Fall Meeting Abstracts
- Pub Date:
- December 2013
- Bibcode:
- 2013AGUFM.T13B2524L
- Keywords:
-
- 3652 MINERALOGY AND PETROLOGY Pressure-temperature-time paths