Receiver function analysis and preliminary body wave tomography of the MACOMO network in Madagascar
Abstract
We present results from a set of seismological studies of the continental island of Madagascar using new seismic data from the NSF-funded MACOMO (MAdagascar, COmores, and MOzambique) IRIS PASSCAL broadband seismometer array. MACOMO involved the deployment during 2011-2013 of 26 broadband seismometers in Madagascar and 6 seismometers in Mozambique, providing the first seismic imaging across the world's 4th-largest island. We present preliminary crustal structure variations from receiver function analyses and body wave tomography results. We calculate radial receiver functions for all Madagascar stations and use the weighted linear regression methodology of Herrmann and Ammon [2002] to invert for shear velocity. Upper mantle and crustal structures from the receiver function analyses are used to help determine starting models for the teleseismic travel-time tomography. The tectonic structure of Madagascar is generally divided into four crustal blocks. Initial seismic imaging shows that the Archean Antongil block that runs along the east of the island has the thickest crust (>40 km) and three Proterozoic terranes that make up the central highlands and are bounded by fault and shear zones are closer to the average crustal thickness (35 km). There has been late Cenozoic intraplate volcanism in northern and central Madagascar (as recently as 1 million years ago), and different hypotheses for its origin will be evaluated by the preliminary results from the three different seismic studies. Complete analyses will be done incorporating seismic data from simultaneous and complementary array of both land- and ocean-based seismometers from French and German deployments.
- Publication:
-
AGU Fall Meeting Abstracts
- Pub Date:
- December 2013
- Bibcode:
- 2013AGUFM.S23A2474P
- Keywords:
-
- 7205 SEISMOLOGY Continental crust;
- 7203 SEISMOLOGY Body waves;
- 7270 SEISMOLOGY Tomography;
- 8180 TECTONOPHYSICS Tomography