Seismic Imaging Beneath the Kanto Plain, Japan, Inferred from S-wavevector Receiver Functions Obtained at Virtual Subsurface Receivers
Abstract
This study describes the seismic images of the crust and uppermost mantle beneath the Kanto plain, Japan, by using S-wavevector receiver function (SWV-RF) analysis at subsurface receivers. The SWV-RF is the time series deconvolving the upgoing SV-wave component by the upgoing P-wave one. This method for ground surface records was originally introduced by Reading et al. (2003, GRL). To calculate deep borehole and/or ocean bottom records, Takenaka and Murakoshi (2010, AGU) proposed the SWV-RF at subsurface station, which obtain it from the seismograms observed at a subsurface station using the structure model from the top to the receiver level. This method has a great advantage that the problem of unclearly seismic images beneath very thick sedimentary basin due to the records include strong effect of reverberation within the sedimentary layer can be overcome. Takenaka and Murakoshi (2012, AGU) applied the method to the teleseismic waveform records observed at not only deep borehole but also shallow borehole and ground surface stations in Kanto plain, Japan. To obtain clearly and continuous seismic images, we increased events for SWV-RFs in the period from April 2004 to July 2013, that is almost three times the number in Takenaka and Murakoshi (2012, AGU). We will show the three-dimensional Seismic Features of the crustal and deeper structures beneath the Kanto plain, Japan, which is derived from the vertical cross-sections of the depth-converted SWV-RFs.
- Publication:
-
AGU Fall Meeting Abstracts
- Pub Date:
- December 2013
- Bibcode:
- 2013AGUFM.S23A2471M
- Keywords:
-
- 7203 SEISMOLOGY Body waves;
- 7240 SEISMOLOGY Subduction zones;
- 7218 SEISMOLOGY Lithosphere