Measuring and Modeling Xenon Uptake in Plastic Beta-Cells
Abstract
The precision of the stable xenon volume measurement in atmospheric monitoring radio-xenon systems is a critical parameter used to determine the activity concentration of a radio-xenon sample. Typically these types of systems use a plastic scintillating beta-cell as part of a beta-gamma detection scheme to measure the radioactivity present in the gas sample. Challenges arise when performing the stable xenon calculation during or after radioactive counting of the sample due to xenon uptake into the plastic beta-cells. Plastic beta cells can adsorb as much as 5% of the sample during counting. If quantification is performed after counting, the uptake of xenon into the plastic results in an underestimation of the xenon volume measurement. This behavior also causes what is typically known as 'memory effect' in the cell. Experiments were conducted using a small volume low pressure range thermal conductivity sensor to quantify the amount of xenon uptake into the cell over a given period of time. Understanding the xenon uptake in the cell provides a better estimate of the stable volume which improves the overall measurement capability of the system. The results from these experiments along with modeling will be presented.
- Publication:
-
AGU Fall Meeting Abstracts
- Pub Date:
- December 2013
- Bibcode:
- 2013AGUFM.S21B2410S
- Keywords:
-
- 7219 SEISMOLOGY Seismic monitoring and test-ban treaty verification