Dynamics of pickup ion velocity distribution function in Titan's plasma environment (TA encounter): 3D hybrid kinetic modeling and comparison with CAPS observations
Abstract
Wave-particle interactions play a very important role in the plasma dynamics near Titan: mass loading, excitation of the low-frequency waves and the formation of the particle velocity distribution function, e.g. ring/shell-like distributions, etc. The kinetic approach is important for estimation of the collision processes e.g. a charge exchange. The particle velocity distribution function also plays a key role for understanding the observed particle fluxes. In this report we discuss the ion velocity distribution function dynamics from 3D hybrid modeling. The modeling is based on recent analysis of the Cassini Plasma Spectrometer (CAPS) ion measurements during the TA flyby. In our model the background ions, all pickup ions, and ionospheric ions are considered as particles, whereas the electrons are described as a fluid. Inhomogeneous photoionization, electron-impact ionization and charge exchange are included in our model. The temperatures of the background electrons and pickup electrons were also included into the generalized Ohm's law. We also take into account the collisions between the ions and neutrals. We use Chamberlain profiles for the exosphere's components and include a simple ionosphere model with M=28 ions that were generated inside the ionosphere. The moon is considered as a weakly conducting body. Our modeling shows that interaction between background plasma and pickup ions H+, H2+, CH4+ and N2+ has a more complicated structure than was observed in the T9 flyby and modeling due to the large gyroradius of the background O+ ions [1,2,3,4]. Special attention will be paid to comparing the simulated pickup ion velocity distribution with CAPS TA observations. We also compare our kinetic modeling with other hybrid and MHD modeling of Titan's environment. References [1] Sittler, E.C., et al., Energy Deposition Processes in Titan's Upper Atmosphere and Its Induced Magnetosphere. In: Titan from Cassini-Huygens, Brown, R.H., Lebreton J.P., Waite, J.H., Eds., Springer, (Dordrecht, Heidelberg, London, New York, pp. 393-455, 2009). [2] Sittler, E.C., et al., Saturn's Magnetospheric Interaction with Titan as Defined by Cassini Encounters T9 and T18: New Results, Planet. Space Sci., doi.10.1016/j.pss.2009.09.017. [3] Coates, A.J., Interaction of Titan's ionosphere with Saturn's magnetosphere. Phil. Trans. R. Soc. A (2009) 367, 773-788, doi: 10.1098/rsta.2008.0248. [4] Lipatov, A.S., et al., Background and pickup ion velocity distribution dynamics in Titan's plasma environment: 3D hybrid simulation and comparison with CAPS T9 observations. Adv. Space Res. 48, 1114-1125, 2011.
- Publication:
-
AGU Fall Meeting Abstracts
- Pub Date:
- December 2013
- Bibcode:
- 2013AGUFM.P53C1867S
- Keywords:
-
- 6033 PLANETARY SCIENCES: COMETS AND SMALL BODIES Magnetospheres;
- 7868 SPACE PLASMA PHYSICS Wave/wave interactions;
- 2780 MAGNETOSPHERIC PHYSICS Solar wind interactions with unmagnetized bodies;
- 5443 PLANETARY SCIENCES: SOLID SURFACE PLANETS Magnetospheres