Lunar Cratering Chronology: Calibrating Degree of Freshness of Craters to Absolute Ages
Abstract
The use of impact craters to age-date surfaces of and/or geomorphological features on planetary bodies is a decades old practice. Various dating techniques use different aspects of impact craters in order to determine ages. One approach is based on the degree of freshness of primary-impact craters. This method examines the degradation state of craters through visual inspection of seven criteria: polygonality, crater ray, continuous ejecta, rim crest sharpness, satellite craters, radial channels, and terraces. These criteria are used to rank craters in order of age from 0.0 (oldest) to 7.0 (youngest). However, the relative decimal scale used in this technique has not been tied to a classification of absolute ages. In this work, we calibrate the degree of freshness to absolute ages through crater counting. We link the degree of freshness to absolute ages through crater counting of fifteen craters with diameters ranging from 5-22 km and degree of freshness from 6.3 to 2.5. We use the Terrain Camera data set on Kaguya to count craters on the continuous ejecta of each crater in our sample suite. Specifically, we divide the crater's ejecta blanket into quarters and count craters between the rim of the main crater out to one crater radii from the rim for two of the four sections. From these crater counts, we are able to estimate the absolute model age of each main crater using the Craterstats2 tool in ArcGIS. Next, we compare the degree of freshness for the crater count-derived age of our main craters to obtain a linear inverse relation that links these two metrics. So far, for craters with degree of freshness from 6.3 to 5.0, the linear regression has an R2 value of 0.7, which corresponds to a relative uncertainty of ×230 million years. At this point, this tool that links degree of freshness to absolute ages cannot be used with craters <8km because this class of crater degrades quicker than larger craters. A graphical solution exists for correcting the degree of freshness for craters <8 km in diameter. We convert this graphical solution to a single function of two independent variables, observed degree of freshness and crater diameter. This function, which results in a corrected degree of freshness is found through a curve-fitting routine and corrects the degree of freshness for craters <8 km in diameter. As a result, we are able to derive absolute ages from the degree of freshness of craters with diameters from about ≤20 km down to a 1 km in diameter with a precision of ×230 million years.
- Publication:
-
AGU Fall Meeting Abstracts
- Pub Date:
- December 2013
- Bibcode:
- 2013AGUFM.P41F1979T
- Keywords:
-
- 5420 PLANETARY SCIENCES: SOLID SURFACE PLANETS Impact phenomena;
- cratering;
- 6250 PLANETARY SCIENCES: SOLAR SYSTEM OBJECTS Moon;
- 5464 PLANETARY SCIENCES: SOLID SURFACE PLANETS Remote sensing