Studying the surface composition of Venus from orbit
Abstract
The atmosphere of Venus allows observations of the surface only in very narrow spectral windows around 1 micron. These have been successfully used by the VenusExpress, Galileo and Cassini spacecrafts as well as by ground-based observers. For any other planetary body this spectral range would be observed in reflectance. However for Venus we can obtain useful data only during nighttime using the thermal emission of the surface. So far no systematic studies have been done on the emissivity of Venus analog materials at high temperatures in this wavelength range due to the significant technical challenges of such experiments. At the Planetary Emissivity Laboratory (PEL) we started 6 years ago to extend our laboratory capabilities to support specifically missions to Venus and Mercury. Both planets exhibit surface temperatures up to 500°C and this extreme temperature range affects the spectral characteristics of the surface minerals. We are systematically studying different Venusian analogs to obtain spectra in the 1 microns region at Venus surface temperatures. First measurements of a carbonatite and an ijolite sample as analogs for low viscosity lavas clearly indicating changes of the emissivity signature at 1 micron with temperature. One of the next steps is to study tesserae analog materials to determine how the diagnostic the 1 micron region is for different compositions. We are currently developing a new instrument concept for future Venus missions designed specifically to observe Venus's surface in segments of the near-IR (NIR) spectrum that penetrate the atmosphere with minimal absorption. The Venus Emissivity Mapper (VEM) builds on experience from analysis of data from Galileo/NIMS, Cassini/VIMS, and especially VIRTIS on Venus Express. Unlike those general-purpose imaging spectrometers, VEM is a hyperspectral mapper focused on observing the surface. It will map the surface in five atmospheric windows between 0.85 and 1.18 microns. In addition, several other bands are used to observe the clouds and water vapor at 0-15 km altitude.
- Publication:
-
AGU Fall Meeting Abstracts
- Pub Date:
- December 2013
- Bibcode:
- 2013AGUFM.P41D1955H
- Keywords:
-
- 6295 PLANETARY SCIENCES: SOLAR SYSTEM OBJECTS Venus;
- 5494 PLANETARY SCIENCES: SOLID SURFACE PLANETS Instruments and techniques;
- 5410 PLANETARY SCIENCES: SOLID SURFACE PLANETS Composition;
- 5464 PLANETARY SCIENCES: SOLID SURFACE PLANETS Remote sensing