The case for a deep-atmospheric in situ mission to address the highest priority Decadal Survey questions for Venus (Invited)
Abstract
Current understanding of Venus lags behind that for Mars, with a major disparity of information concerning noble and trace gases and the small scale surface processes needed for comparative studies of terrestrial planet evolution. Despite global surface mapping by Magellan, discoveries by Venera landers, and ongoing atmospheric observations by the Venus Express (VEx) orbiter, significant questions about Venus remain unanswered. To place Venus into its proper context with respect to Mars and Earth, it is necessary to obtain new measurements that address top issues identified in the National Research Council (NRC) Solar System Decadal Survey: (1) evolution of the atmosphere, history of climate, and evidence of past hydrologic cycles; (2) history of volatiles and sedimentary cycles; and (3) planetary surface evolution. To answer these questions, new measurements are needed. First and foremost, in situ noble gas measurements are needed to constrain solar system formation and Venus evolution. In particular, the isotopic ratios of Xe and Kr can provide unique insights into planetary accretion. Isotopic measurements of nitrogen (15N/14N) will place important constraints on atmospheric loss processes. Current knowledge of this ratio has a substantial uncertainty of ×20%. VEx observations of hydrogen isotopes indicate the D/H ratio above the clouds is substantially greater than measured by Pioneer Venus, and varies with height. High precision measurements of the vertical distribution of the D/H isotopic ratio below the cloud layers will provide constraints on models of the climate history of water on Venus. The majority of atmospheric mass is located below the clouds. Current data suggest intense interaction among atmospheric gases down to the surface. The haze within the cloud region of unknown composition plays a central role in the radiative balance. Photochemically-derived species (H2SO4, OCS, CO, Sn) are subjected to thermochemical reactions below the clouds, especially within 30 km of the surface. Competing temperature-pressure dependent reactions and atmospheric circulation may cause vertical and latitudinal gradients of chemically-active trace gases (e.g., SO2, H2S, OCS, CO). Measurements of the chemical composition of the near-surface atmosphere can be used to evaluate the stability of primary and secondary minerals and can help to understand chemistry of atmosphere-surface interactions. However, concentrations of many trace species have never been measured below ~30 km, and multiple in situ measurements are required to evaluate chemical processes and cycles of volatiles, which can only be accomplished with deep entry probes. Current lack of understanding about Venus not only limits our understanding of evolutionary pathways Earth could experience, but also suggests that we are ill-equipped to understand the evolution of star systems with similar-sized planets.
- Publication:
-
AGU Fall Meeting Abstracts
- Pub Date:
- December 2013
- Bibcode:
- 2013AGUFM.P41D1953A
- Keywords:
-
- 6295 PLANETARY SCIENCES: SOLAR SYSTEM OBJECTS Venus;
- 5210 PLANETARY SCIENCES: ASTROBIOLOGY Planetary atmospheres;
- clouds;
- and hazes