Calcium Sulfate Vein Observations at Yellowknife Bay using ChemCam on the Curiosity Rover
Abstract
The Mars Science Laboratory Curiosity rover completed its traverse from the Bradbury landing site into Yellowknife Bay (YKB) on sol 125, where it spent ~175 sols. The YKB region is characterized as a fluvio-lacustrine depositional environment. The entire Curiosity payload was used to thoroughly investigate parts of YKB from which significant geochemical observations were made, including the identification of anhydrite and hydrated calcium sulfate. The Curiosity ChemCam package consists of a remote Laser-Induced Breakdown Spectrometer (LIBS) and a Remote Micro-Imager (RMI). LIBS is essentially an elemental analysis micro-probe capable of 300 - 550 μm spatial resolution from 1.5 - 7.0 m standoff distance from the Curiosity mast. The RMI records context images that have a resolution of 40 μrad, which corresponds to 120 μm at 3 meters. The ChemCam instrument recorded many calcium rich geochemical features as it descended ~18 m into YKB. Many light-toned veins became apparent with the ChemCam RMI and Mastcam once Curiosity entered YKB. The ChemCam LIBS instrument is uniquely capable of distinctly probing the elemental composition of these vein structures separately from the host rock. LIBS demonstrated that the white vein material was dominated by CaSO4, while the host rock had relatively low SO3 compositions. The ChemCam instrument can also qualitatively detect H, presumably due to H2O, in many samples. While some of these veins contained no H signature beyond the ubiquitous small amount of H on rock surfaces and in soils, some of the veins contained various amounts of H as a function of depth indicating that some of the samples were either bassanite or gypsum. Mastcam spectral hydration surveys detect evidence of hydration that is consistent with (but not a unique indicator of) the presence of gypsum in some, but not all, of the veins. The CheMin X-ray diffraction instrument identified both anhydrite and bassanite in the matrix of a mudstone unit but did not detect gypsum. Stoichiometric analysis of the ChemCam data currently suggests that the hydrated vein samples analyzed by LIBS are bassanite. This paper will summarize the vein observations and describe some of the more likely formation mechanisms.
- Publication:
-
AGU Fall Meeting Abstracts
- Pub Date:
- December 2013
- Bibcode:
- 2013AGUFM.P23C1797C
- Keywords:
-
- 1060 GEOCHEMISTRY Planetary geochemistry;
- 6225 PLANETARY SCIENCES: SOLAR SYSTEM OBJECTS Mars