Aeolian Abrasion at the Curiosity Landing Site: Clues to the Role of Wind in Landscape Modification
Abstract
The broad scale geomorphology of Gale Crater reflects diverse aeolian processes, from airfall settling that likely deposited much of the upper and some of the lower units of Mt. Sharp, to evidence of extensive wind exhumation and removal of material exterior to the mound, to active dunes on the crater floor. The integrated effect of aeolian sand transport can also be examined on a much smaller scale by the study of ventifacts, rocks that have been abraded by windborne particles. A diversity of ventifacts are found along Curiosity's traverse through the upper 'hummocky' (HY) geomorphic unit and the lower Yellowknife Bay (YKB) sedimentary rocks. The textures are analogous to abrasion features found on Earth and include cm-scale facets, keels, elongated pits, grooves, flutes, and basal sills. High-resolution images from ChemCam's Remote Micro-Imager also show mm-scale lineations. Evidence of differential erosion is common, with HY conglomerates (e.g., Hottah, Link) and the YKB Sheepbed mudstone unit containing distinct wind tails in the lee of resistant pebbles, and bedding features within Rocknest 3, the YKB Shaler sandstone unit, and other layered rocks displaying prominent ridge-groove topography. ChemCam LIBS depth profile data so far show no strong evidence for chemical differences in the elemental composition between abraded and non-abraded surfaces (as determined from qualitative assessment), as might be expected if there were rock coatings or weathering rinds undergoing active abrasion. Preliminary measurements of ventifact texture and wind tail orientations indicate sandblasting in HY and YKB from predominantly southwesterly and northerly directions, respectively. Based on meso-scale models of current winds and REMS results, SW flow is uncommon whereas N winds are frequent. Compositional and textural information from the suite of MSL instruments indicate that HY rocks are dominated by various types of basalt (either as whole rocks or the resistant clasts in conglomerates), whereas YKB are basaltic clastic rocks, with the lower members impregnated with sulfate veins, and were easily drilled. The HY rocks are therefore likely more resistant to abrasion than those of YKB. Combined, these results indicate that ventifacts so far investigated by MSL record two wind regimes, one a long-term integrated record of rare, yet strong winds and the other more reflective of typical conditions.
- Publication:
-
AGU Fall Meeting Abstracts
- Pub Date:
- December 2013
- Bibcode:
- 2013AGUFM.P23C1791B
- Keywords:
-
- 6225 PLANETARY SCIENCES: SOLAR SYSTEM OBJECTS Mars;
- 5415 PLANETARY SCIENCES: SOLID SURFACE PLANETS Erosion and weathering;
- 5470 PLANETARY SCIENCES: SOLID SURFACE PLANETS Surface materials and properties