Survey of Large, Igneous-Textured Inclusions in Ordinary Chondrites
Abstract
Ordinary (O) chondrites are a class of primitive stony meteorites, and as a group comprise our most abundant samples of early solar system materials. Unique to O chondrites are igneous-textured inclusions up to 4 cm in diameter; about an order of magnitude larger than the much more abundant chondrules. These inclusions are almost always highly depleted in metal and sulfide relative to their host meteorite, but but otherwise have diverse characteristics. They exhibit a large range of textures, mineralogies, and bulk compositions, suggesting a variety of formation processes. They all crystallized from large melt volumes, the origins of which are poorly understood. Models proposed for their formation include (1) shock melting of ordinary chondrites with an associated loss of metal and sulfide; (2) melting of vapor-fractionated condensate mixture; (3) chondrule formation involving a larger melt production volume than typical for chondrules; and (4) igneous differentiation occurring within planetesimals sampled by ordinary chondrite parent bodies. Polished thin sections of inclusions from several O-chondrites have been examined with optical light microscopy (OLM) using a Leica DM 2500 petrographic microscope. Petrographic data such as texture, grain sizes and shapes were collected for the inclusions and their hosts in order to facilitate comparisons. Texturally, the inclusions were determined to fall into one of three distinct textural categories: porphyritic, fine granular, and skeletal. Mean grain sizes are on the order of 100 um for both microporphyritic and fine granular inclusions, with microporphyritic inclusions showing a much wider range of grain sizes. The largest grains in the microporphyritic inclusions are on average ~0.25 mm, with the grains of the mesostasis <100 microns. Skeletal olivine textures are defined as being dominated by crystals that are an order of magnitude longer across one direction than the other (e.g., 1 mm x 100 um). Five inclusions have been investigated with scanning electron microscopy (SEM) on a Zeiss Sigma FE-VP SEM at Portland State University. Backscatter electron micrographs were obtained in order to provide additional petrographic data, and olivine composition was determined using a silicon-drift energy dispersive X-ray (EDX) detector integrated with an Oxford Instruments AZtec X-ray analytical system. Olivine crystals of six inclusions were investigated with electron microprobe analysis (EMPA), performed with a Cameca SX-100 electron microprobe located at Oregon State University, and remotely operated from Portland State. The instrument will be operated at 15 kV accelerating voltage, with a 10-50 nA sample current and a beam diameter of approximately 1 um. Chemically, some inclusions were found to have equilibrated olivine, while others were uneqilibrated. This was also unrelated to host classification, as well as unrelated to host petrographic type. Of the two unequilibrated hosts studied, one had two unequilibrated inclusions, while the other had one equilibrated inclusion. Several eqilibrated hosts had equilibrated inclusion, while one equilibrated host had an unequilibrated inclusion. Neither texture nor chemistry was determined to be related to host type or related to whether the inclusion is a drop-formed mass or a clast.
- Publication:
-
AGU Fall Meeting Abstracts
- Pub Date:
- December 2013
- Bibcode:
- 2013AGUFM.P23A1761A
- Keywords:
-
- 6240 PLANETARY SCIENCES: SOLAR SYSTEM OBJECTS Meteorites and tektites