An Error Model for High-Time Resolution Satellite Precipitation Products
Abstract
A new error scheme (PUSH: Precipitation Uncertainties for Satellite Hydrology) is presented to provide global estimates of errors for high time resolution, merged precipitation products. Errors are estimated for the widely used Tropical Rainfall Monitoring Mission (TRMM) Multi-satellite Precipitation Analysis (TMPA) 3B42 product at daily/0.25° resolution, using the high quality NOAA CPC-UNI gauge analysis as the benchmark. Each of the following four scenarios is explored and explicitly modeled: correct no-precipitation detection (both satellite and gauges detect no precipitation), missed precipitation (satellite records a zero, but it is incorrect), false alarm (satellite detects precipitation, but the reference is zero), and hit (both satellite and gauges detect precipitation). Results over Oklahoma show that the estimated probability distributions are able to reproduce the probability density functions of the benchmark precipitation, in terms of both expected values and quantiles. PUSH adequately captures missed precipitation and false detection uncertainties, reproduces the spatial pattern of the error, and shows a good agreement between observed and estimated errors. The resulting error estimates could be attached to the standard products for the scientific community to use. Investigation is underway to: 1) test the approach in different regions of the world; 2) verify the ability of the model to discern the systematic and random components of the error; 3) and evaluate the model performance when higher time-resolution satellite products (i.e., 3-hourly) are employed.
- Publication:
-
AGU Fall Meeting Abstracts
- Pub Date:
- December 2013
- Bibcode:
- 2013AGUFM.H43I1581M
- Keywords:
-
- 1854 HYDROLOGY Precipitation;
- 1873 HYDROLOGY Uncertainty assessment;
- 1855 HYDROLOGY Remote sensing