The Hydrochemical Evolution of Water-Filled Sinkholes at Bitter Lake NWR, Roswell, NM
Abstract
Bitter Lake National Wildlife Refuge in Roswell, NM houses one of the most ecologically significant wetlands in the US-SW including approximately 52 water-filled sinkholes each supporting a unique biological assemblage, including several endangered and endemic species (e.g., Pecos pupfish and Noel's amphipod, respectively). Forming in the karst landscape adjacent to the Pecos River where the regional dual-aquifer system discharges through a network of springs and seeps, these sinkholes are recharged by saline groundwater that is subject to anthropogenic withdrawals for irrigation and hydrocarbon production and chemically altered by a complex series of evaporation-precipitation reactions after discharge. This study investigates the hydrochemical differences among these sinkholes while considering the evolutionary processes affecting water column structure, geochemical mixing and ecological sustainability. Two major sampling suites, pre- and post-irrigation, yielded waters from 1.0m increments along the water columns of 10 representative sinkholes. Samples were analyzed for major ions, stable isotopes [δ18O, δD ], and dissolved gases; PHREEQc was used to model mineral saturation and speciation. An in-situ mineral precipitation experiment provided growth rate and mineral morphological (SEM) data. Source water is chemically similar to shallow springs found at the Refuge (Sago Spring). Sinkholes exhibit bimodal water column structure (well-mixed or stratified) organized in response to water density (with ~1.035 g/cm3 forming the modal transition threshold). By measuring the density, TDS or conductivity at sinkhole surface it is possible to predict modality of water column structure. Sinkhole waters - regardless of depth or season - fall along a common isotopic evaporation trajectory (δ D = 3.387*δ18O - 19.38), and adopt a Na-Cl chemical endmember facies. Driven primarily by physical sinkhole geometry (e.g., depth and surface area), sinkhole water follows a predictable evolutionary progression from spring-like well-mixed ('young'), to moderately saline well-mixed ('transitional'), to saline and stratified ('old' or 'evolved'), based on the relative volume of water that has entered and subsequently evaporated from the system. Simple geochemical models reveal calcium- and sulfate-bearing minerals (calcite, gypsum) precipitate early in the reaction while halite and magnesium-containing minerals precipitate late, rendering increased Cl- and Mg+ concentrations in fluids subjected to prolonged evaporation. This water is also high in CO2 content and may contain traces of He, suggesting emergent water is a combination of groundwater (dominant) and deeply sourced fluids (minor). Both PO4 and NH4 are present in biologically-significant concentrations in sinkholes with chemically controlled water columns, and photosynthetic bacteria were found to organize at the bottom of the photic zone. High NH4 and CO2 accompanying low O2 dissolved gas values confirm the increased biological control in stratified sinkholes. Resident fish populations are affected by water chemistry which reduces reproductive success or exceed the survivable range of habitable conditions. Results of this study serve as a geochemical baseline survey of Refuge sinkholes and may be used to both aid with biological resource management and predict stratified conditions using measurable proxies.
- Publication:
-
AGU Fall Meeting Abstracts
- Pub Date:
- December 2013
- Bibcode:
- 2013AGUFM.H43A1419P
- Keywords:
-
- 1845 HYDROLOGY Limnology;
- 0497 BIOGEOSCIENCES Wetlands;
- 1022 GEOCHEMISTRY Composition of the hydrosphere