On Time/Space Aggregation of Fine-Scale Error Estimates (Invited)
Abstract
Estimating errors inherent in fine time/space-scale satellite precipitation data sets is still an on-going problem and a key area of active research. Complicating features of these data sets include the intrinsic intermittency of the precipitation in space and time and the resulting highly skewed distribution of precipitation rates. Additional issues arise from the subsampling errors that satellites introduce, the errors due to retrieval algorithms, and the correlated error that retrieval and merger algorithms sometimes introduce. Several interesting approaches have been developed recently that appear to make progress on these long-standing issues. At the same time, the monthly averages over 2.5°x2.5° grid boxes in the Global Precipitation Climatology Project (GPCP) Satellite-Gauge (SG) precipitation data set follow a very simple sampling-based error model (Huffman 1997) with coefficients that are set using coincident surface and GPCP SG data. This presentation outlines the unsolved problem of how to aggregate the fine-scale errors (discussed above) to an arbitrary time/space averaging volume for practical use in applications, reducing in the limit to simple Gaussian expressions at the monthly 2.5°x2.5° scale. Scatter diagrams with different time/space averaging show that the relationship between the satellite and validation data improves due to the reduction in random error. One of the key, and highly non-linear, issues is that fine-scale estimates tend to have large numbers of cases with points near the axes on the scatter diagram (one of the values is exactly or nearly zero, while the other value is higher). Averaging 'pulls' the points away from the axes and towards the 1:1 line, which usually happens for higher precipitation rates before lower rates. Given this qualitative observation of how aggregation affects error, we observe that existing aggregation rules, such as the Steiner et al. (2003) power law, only depend on the aggregated precipitation rate. Is this sufficient, or is it necessary to aggregate the precipitation error estimates across the time/space data cube used for averaging? At least for small time/space data cubes it would seem that the detailed variables that affect each precipitation error estimate in the aggregation, such as sensor type, land/ocean surface type, convective/stratiform type, and so on, drive variations that must be accounted for explicitly.
- Publication:
-
AGU Fall Meeting Abstracts
- Pub Date:
- December 2013
- Bibcode:
- 2013AGUFM.H42F..04H
- Keywords:
-
- 1854 HYDROLOGY Precipitation;
- 1855 HYDROLOGY Remote sensing;
- 3354 ATMOSPHERIC PROCESSES Precipitation;
- 3360 ATMOSPHERIC PROCESSES Remote sensing