Influence of mesoscale anticyclonic eddies on zooplankton distribution south of the western Aleutian Islands during summer
Abstract
Mesoscale anticyclonic eddies have been observed south of the Aleutian Islands located between the Bering Sea and the subarctic Pacific. Eddies farther east, in the Gulf of Alaska, are known to transport coastal water and coastal zooplankton to offshore open ocean. The impacts of mesoscale anticyclonic eddies formed south of the western Aleutian Islands (Aleutian eddies) on the zooplankton community are not fully understood. In the present study, we describe zooplankton population structures within an Aleutian eddy and outside the eddy during July 2010. Our field study was conducted at seven stations along 51°15‧N from 171°21‧E to 174°38‧E (western line) and at four stations along 50°40‧N from 176°24‧E to 178°44‧E (eastern line) on 7-8 July 2010. At each station, environmental data (temperature, salinity and fluorescence were measured by CTD/XCTD. Zooplankton samples were collected by vertical tow of 150 m depth to the surface using 100 μm mesh size plankton net. Based on the sea level anomaly (SLA), the western line crossed an anticyclonic eddy but the eastern line did not cross the eddy (Fig. 1). This Aleutian eddy was formed south of Attu Island (52°54‧N, 172°54‧E) in mid-February 2010, and it moved southeastward in the next five months. The SLA near the eddy center, representing the strength of the eddy, continuously increased, and the area oscillated at one to two month periods overlain on a general increase from ~7,000 to ~18,000 km2. Large oceanic copepods, Neocalanus cristatus, Eucalanus bungii and Metridia pacifica were more abundant inside the eddy than the outside. Inside the eddy, the life stage distribution of N. cristatus was advanced than that outside, and Neocalanus spp. had accumulated more lipids. These conditions probably reflect the greater primary production in the eddy, production enhanced by nutrients advected into the eddy. Since the Aleutian eddy was formed in offshore waters and/or eddy-eddy interaction occurred after its formation, it contained mostly oceanic copepods. The sufficient food condition in the eddy presumably induced higher growth and survival rates of these oceanic copepods, resulting in the greater abundance, advanced development stages and greater lipid accumulation. Fig. 1. Sea level anomaly along the sampling lines on 7 July 2010 south of the western Aleutian Islands.
- Publication:
-
AGU Fall Meeting Abstracts
- Pub Date:
- December 2013
- Bibcode:
- 2013AGUFM.H41F1290S
- Keywords:
-
- 4520 OCEANOGRAPHY: PHYSICAL Eddies and mesoscale processes;
- 4890 OCEANOGRAPHY: BIOLOGICAL AND CHEMICAL Zooplankton