Diffusion of DNAPL Components into Low Permeability Soils
Abstract
Hazardous waste sites contaminated with dense non-aqueous phase liquids (DNAPLs) have proven difficult to remediate. Even though DNAPLs may be removed from high permeability subsurface strata, the storage of compounds making up DNAPLs in low permeability strata constitutes a secondary source that contributes to a dissolved phase plume over an extended period of time. The movement of DNAPL constituents into and out of low permeable strata is considered to occur through diffusion. However, there are few experimentally measured effective diffusion coefficients for DNAPL components in low permeability soils. Thus, the effective diffusion coefficient is commonly estimated from the aqueous phase diffusion coefficient as a function of the porosity of the soil. This study presents measurements of effective diffusion coefficients of chlorinated solvents and an anionic surfactant dioctyl sodium sulfosuccinate (AOT) in silt and clay-silt mixtures. The experimental results are compared with estimated values to evaluate the performance of commonly used methods to estimate effective diffusion coefficients of DNAPL components. These estimation models generally suggest an increase in the effective diffusion coefficient with an increase in porosity. Yet, in low permeable soils with a substantial fraction of clay, the effective diffusion coefficient for chlorinated solutes decreases, although the porosity increases. Thus, calculations of the quantity of mass stored in low permeable strata may be in error if based on rates of diffusion calculated using such models. In addition to chlorinated solvents, DNAPLs often contain surfactants. The high molecular weight of these solutes results in problems when estimating their effective diffusion coefficient in low permeability soils, since commonly models were formulated for use with low molecular weight compounds. Furthermore, some clay minerals present in low permeable soils have a flexible structure which enables them to expand or contract. Previous work has shown that the structure of sodium smectites can contract upon contact with DNAPLs. As contraction of the clay structure might affect the effective diffusion coefficient, the use of current methods to estimate the effective diffusion coefficient of DNAPL components in clayey soils may be limited.
- Publication:
-
AGU Fall Meeting Abstracts
- Pub Date:
- December 2013
- Bibcode:
- 2013AGUFM.H33K..08A
- Keywords:
-
- 1829 HYDROLOGY Groundwater hydrology;
- 1832 HYDROLOGY Groundwater transport