The NASA GPM Iowa Flood Studies Experiment
Abstract
The overarching objective of NASA Global Precipitation Measurement Mission (GPM) integrated hydrologic ground validation (GV) is to provide a better understanding of the strengths and limitations of the satellite products, in the context of hydrologic applications. Accordingly, the NASA GPM GV program recently completed the first of several hydrology-oriented field efforts: the Iowa Flood Studies (IFloodS) experiment. IFloodS was conducted in central Iowa during the months of April-June, 2013. IFloodS science objectives focused on: a) The collection of reference multi-parameter radar, rain gauge, disdrometer, soil moisture, and hydrologic network measurements to quantify the physical character and space/time variability of rain (e.g., rates, drop size distributions, processes), land surface- state and hydrologic response; b) Application of the ground reference measurements to assessment of satellite-based rainfall estimation uncertainties; c) Propagation of both ground and satellite rainfall estimation uncertainties in coupled hydrologic prediction models to assess impacts on predictive skill; and d) Evaluation of rainfall properties such as rate and accumulation relative to basin hydrologic characteristics in modeled flood genesis. IFloodS observational objectives were achieved via deployments of the NASA NPOL S-band and D3R Ka/Ku-band dual-polarimetric radars (operating in coordinated scanning modes), four University of Iowa X-band dual-polarimetric radars, four Micro Rain Radars, a network of 25 paired rain gauge platforms with attendant soil moisture and temperature probes, a network of six 2D Video and 14 Parsivel disdrometers, and 15 USDA-ARS rain gauge and soil-moisture stations (collaboration with the USDA-ARS and NASA Soil Moisture Active-Passive mission). The aforementioned platforms complemented existing operational WSR-88D S-band polarimetric radar, USGS streamflow, and Iowa Flood Center-affiliated stream monitoring and rainfall measurements. Coincident low-earth orbiter microwave, geostationary infrared, and derived satellite-algorithm rainfall products were also archived during the experiment. Twice daily NASA Unified Weather Research and Forecasting model simulations were conducted to provide weather forecast guidance and a coupled atmospheric/land-surface model simulation benchmark. During the experiment the IFloodS observational domain experienced heavy rainfall (> 250-300 mm) and significant flooding. Deployed observational assets, especially the research radars performed well throughout the experiment, sampling a broad range of precipitation system types including multi-day mixtures of rain and snow, warm-season mesoscale convective systems, and supercell thunderstorms. The variety of regimes and large rain accumulations sampled creates a rich source of data for testing both satellite products and coupled atmospheric, land system, and hydrologic models. In this study we will provide an overview of the IFloodS experiment, datasets, and preliminary observational results.
- Publication:
-
AGU Fall Meeting Abstracts
- Pub Date:
- December 2013
- Bibcode:
- 2013AGUFM.H33E1435P
- Keywords:
-
- 1853 HYDROLOGY Precipitation-radar;
- 1840 HYDROLOGY Hydrometeorology;
- 1821 HYDROLOGY Floods;
- 3360 ATMOSPHERIC PROCESSES Remote sensing