Quantification of frequency-components contributions to the discharge of a karst spring
Abstract
Karst aquifers represent important underground resources for water supplies, providing it to 25% of the population. Nevertheless such systems are currently underexploited because of their heterogeneity and complexity, which make work fields and physical measurements expensive, and frequently not representative of the whole aquifer. The systemic paradigm appears thus at a complementary approach to study and model karst aquifers in the framework of non-linear system analysis. Its input and output signals, namely rainfalls and discharge contain information about the function performed by the physical process. Therefore, improvement of knowledge about the karst system can be provided using time series analysis, for example Fourier analysis or orthogonal decomposition [1]. Another level of analysis consists in building non-linear models to identify rainfall/discharge relation, component by component [2]. In this context, this communication proposes to use neural networks to first model the rainfall-runoff relation using frequency components, and second to analyze the models, using the KnoX method [3], in order to quantify the importance of each component. Two different neural models were designed: (i) the recurrent model which implements a non-linear recurrent model fed by rainfalls, ETP and previous estimated discharge, (ii) the feed-forward model which implements a non-linear static model fed by rainfalls, ETP and previous observed discharges. The first model is known to better represent the rainfall-runoff relation; the second one to better predict the discharge based on previous discharge observations. KnoX method is based on a variable selection method, which simply considers values of parameters after the training without taking into account the non-linear behavior of the model during functioning. An amelioration of the KnoX method, is thus proposed in order to overcome this inadequacy. The proposed method, leads thus to both a hierarchization and a quantification of the input variables, here the frequency components, over output signal. Applied to the Lez karst aquifer, the combination of frequency decomposition and knowledge extraction improves knowledge on hydrological behavior. Both models and both extraction methods were applied and assessed using a fictitious reference model. Discussion is proposed in order to analyze efficiency of the methods compared to in situ measurements and tracing. [1] D. Labat et al. 'Rainfall-runoff relations for karst springs. Part II: continuous wavelet and discrete orthogonal multiresolution' In J of Hydrology, Vol. 238, 2000, pp. 149-178. [2] A. Johannet et al. 'Prediction of Lez Spring Discharge (Southern France) by Neural Networks using Orthogonal Wavelet Decomposition'.IJCNN Proceedings Brisbane 2012. [3] L. Kong A Siou et al. 'Modélisation hydrodynamique des karsts par réseaux de neurones : Comment dépasser la boîte noire. (Karst hydrodynamic modelling using artificial neural networks: how to surpass the black box ?)'. Proceedings of the 9th conference on limestone hydrogeology,2011 Besançon, France.
- Publication:
-
AGU Fall Meeting Abstracts
- Pub Date:
- December 2013
- Bibcode:
- 2013AGUFM.H23G1360T
- Keywords:
-
- 1847 HYDROLOGY Modeling;
- 1872 HYDROLOGY Time series analysis;
- 1942 INFORMATICS Machine learning