Test and Sensitivity Analysis of Hydrological Modeling in the Coupled WRF-Urban Modeling System
Abstract
Rapid urbanization has emerged as the source of many adverse effects that challenge the environmental sustainability of cities under changing climatic patterns. One essential key to address these challenges is to physically resolve the dynamics of urban-land-atmospheric interactions. To investigate the impact of urbanization on regional climate, physically-based single layer urban canopy model (SLUCM) has been developed and implemented into the Weather Research and Forecasting (WRF) platform. However, due to the lack of realistic representation of urban hydrological processes, simulation of urban climatology by current coupled WRF-SLUCM is inevitably inadequate. Aiming at improving the accuracy of simulations, recently we implemented urban hydrological processes into the model, including (1) anthropogenic latent heat, (2) urban irrigation, (3) evaporation over impervious surface, and (4) urban oasis effect. In addition, we couple the green roof system into the model to verify its capacity in alleviating urban heat island effect at regional scale. Driven by different meteorological forcings, offline tests show that the enhanced model is more accurate in predicting turbulent fluxes arising from built terrains. Though the coupled WRF-SLUCM has been extensively tested against various field measurement datasets, accurate input parameter space needs to be specified for good model performance. As realistic measurements of all input parameters to the modeling framework are rarely possible, understanding the model sensitivity to individual parameters is essential to determine the relative importance of parameter uncertainty to model performance. Thus we further use an advanced Monte Carlo approach to quantify relative sensitivity of input parameters of the hydrological model. In particular, performance of two widely used soil hydraulic models, namely the van Genuchten model (based on generic soil physics) and an empirical model (viz. the CHC model currently adopted in WRF-SLUCM) is investigated. Results show that the CHC model requires a much finer time step for numerical stability in hydrological modeling and thus is more computationally expensive in the coupled WRF-SLUCM modeling environment.
- Publication:
-
AGU Fall Meeting Abstracts
- Pub Date:
- December 2013
- Bibcode:
- 2013AGUFM.H21C1048W
- Keywords:
-
- 1840 HYDROLOGY Hydrometeorology;
- 1873 HYDROLOGY Uncertainty assessment;
- 1834 HYDROLOGY Human impacts;
- 1847 HYDROLOGY Modeling