Laboratory for Radiokrypton Dating
Abstract
Due to its simple production and transport processes in the terrestrial environment, the long-lived noble-gas isotope 81Kr (half-life = 230 kyr) is the ideal tracer for studying old water and ice in the age range of 10^5-10^6 years, a range beyond the reach of 14C. 81Kr dating, a concept pursued in the past four decades by numerous laboratories employing a variety of techniques, is now available for the first time to the earth science community at large. This is made possible by the development of ATTA-3 (Jiang et al., GCA 91, 1-6; 2012), an efficient and selective atom counter based on the Atom Trap Trace Analysis method (Chen et al., Science 286, 1139-1141; 1999). The instrument is capable of measuring both 81Kr/Kr and 85Kr/Kr ratios of environmental samples in the range of 10^-14-10^-10. For 81Kr-dating in the age range of 150 - 1,500 kyr, the required sample size is 5 - 10 micro-L STP of krypton gas, which can be extracted from approximately 100 - 200 kg of water or 40 - 80 kg of ice. For 85Kr/Kr analysis, the required sample size is generally smaller by an order of magnitude because of the isotope's higher initial abundance in the atmosphere. The Laboratory for Radiokrypton Dating is currently equipped to analyze up to 120 samples per year. With future equipment upgrades, this limit can be increased as demand grows. In the period since November 2011, the Laboratory has measured both 81Kr/Kr and 85Kr/Kr ratios in over 50 samples that had been extracted by collaborators from six different continents. The samples were from groundwater wells in the Great Artesian Basin (Australia), Guarani Aquifer (Brazil), and Locust Grove (Maryland); from brine wells of the Waste Isolation Pilot Plant (New Mexico); from geothermal steam vents in Yellowstone National Park; from near-surface ice at Taylor Glacier, Antarctica; and from deep mines in South Africa. Sample collection and purification was performed by groups including the University of Illinois at Chicago, University of Bern, and International Atomic Energy Agency. ATTA is a laser-based atom counting method, not a mass spectrometry method. A magneto-optical trap is used to capture neutral atoms (rather than ions) of the desired isotope using laser beams. A photo-sensor detects the laser induced fluorescence emitted by the individual trapped atoms. ATTA is unique among trace analysis techniques in that it is free of interferences from any other isotopes, isobars, atomic or molecular species. In an experiment demonstrating that ATTA-3 can analyze 39Ar/Ar ratios in environmental samples, no interference from other atomic or molecular species was observed at the 1x10^-16 level (Jiang et al., Phys. Rev. Lett. 106, 103001; 2011). This work proved the feasibility of performing 39Ar dating using the ATTA method. We are supported by DOE, Office of Nuclear Physics, under contract DE-AC02-06CH11357, and by Argonne National Laboratory.
- Publication:
-
AGU Fall Meeting Abstracts
- Pub Date:
- December 2013
- Bibcode:
- 2013AGUFM.H13I1480L
- Keywords:
-
- 1895 HYDROLOGY Instruments and techniques: monitoring;
- 9805 GENERAL OR MISCELLANEOUS Instruments useful in three or more fields;
- 0794 CRYOSPHERE Instruments and techniques;
- 1194 GEOCHRONOLOGY Instruments and techniques