Two components of postseismic gravity changes of megathrust earthquakes from satellite gravimetry
Abstract
There are several reports of the observations of gravity changes due to megathrust earthquakes with data set of Gravity Recovery And Climate Experiment (GRACE) satellite. We analyzed the co- and postseismic gravity changes of the three magnitude 9 class earthquakes, the 2004 Sumatra-Andaman, the 2010 Chile (Maule), and the 2011 Tohoku-Oki earthquakes, using the newly released data (Release 05 data) set. In addition to the coseismic steps, these earthquakes showed a common feature that the postseismic changes include two components with different polarity and time constants, i.e. rapid decreases over a few months, followed by slow increases lasting for years. This is shown in the auxiliary figure of this abstract. In this figure, the white circles are the data whose seasonal and secular changes were removed. The vertical translucent lines denote the earthquake occurrence times. All the three earthquakes suggest the existence of two postseismic gravity change components with two distinct time constants. The first (short-term) component showed geographical distribution similar to the coseismic changes, but the position of the largest gravity decrease shifted toward the trench. The short-term components can be related to afterslip, but their time constants and distributions showed significant deviation from gravity changes predicted by the afterslip models. The second (long-term) components are characterized by positive gravity changes with the peak close to the trench axis. The long-term components should be attributed to different or multiple mechanisms, e.g. viscous relaxation of rocks in the upper mantle [Han and Simons, 2008; Panet et al., 2007] and diffusion of supercritical water around the down-dip end of the ruptured fault [Ogawa and Heki, 2007]. Both of the two mechanisms can explain the postseismic gravity increase in this timescale to some extent, but there have been no decisive evidence to prove or disprove either one of these. But generally speaking, postseismic crustal movements measured by GPS do not show such polarity reversals. This suggests that satellite gravimetry can separate two independent physical postseismic processes that are not discernible by observing only surface crustal movements.
- Publication:
-
AGU Fall Meeting Abstracts
- Pub Date:
- December 2013
- Bibcode:
- 2013AGUFM.G33B0991T
- Keywords:
-
- 1217 GEODESY AND GRAVITY Time variable gravity