Global Monitoring of Mountain Glaciers Using High-Resolution Spotlight Imaging from the International Space Station
Abstract
Mountain glaciers around the world are retreating rapidly, contributing about 20% to present-day sea level rise. Numerous studies have shown that mountain glaciers are sensitive to global environmental change. Temperate-latitude glaciers and snowpack provide water for over 1 billion people. Glaciers are a resource for irrigation and hydroelectric power, but also pose flood and avalanche hazards. Accurate mass balance assessments have been made for only 280 glaciers, yet there are over 130,000 in the World Glacier Inventory. The rate of glacier retreat or advance can be highly variable, is poorly sampled, and inadequately understood. Liquid water from ice front lakes, rain, melt, or sea water and debris from rocks, dust, or pollution interact with glacier ice often leading to an amplification of warming and further melting. Many mountain glaciers undergo rapid and episodic events that greatly change their mass balance or extent but are sparsely documented. Events include calving, outburst floods, opening of crevasses, or iceberg motion. Spaceborne high-resolution spotlight optical imaging provides a means of clarifying the relationship between the health of mountain glaciers and global environmental change. Digital elevation models (DEMs) can be constructed from a series of images from a range of perspectives collected by staring at a target during a satellite overpass. It is possible to collect imagery for 1800 targets per month in the ×56° latitude range, construct high-resolution DEMs, and monitor changes in high detail over time with a high-resolution optical telescope mounted on the International Space Station (ISS). Snow and ice type, age, and maturity can be inferred from different color bands as well as distribution of liquid water. Texture, roughness, albedo, and debris distribution can be estimated by measuring bidirectional reflectance distribution functions (BRDF) and reflectance intensity as a function of viewing angle. The non-sun-synchronous orbit of the ISS results in varying illumination angles and fix-point spotlight imaging results in varying viewing angles, ideal for viewing steep slopes on glaciers and adjacent areas. Rapid events may be observed in progress by correlating changes in images over a single pass or between passes. We present a working design, data acquisition parameters, science objectives, and data processing strategy for a conceptual instrument, MUIR (Mission to Understand Ice Retreat).
- Publication:
-
AGU Fall Meeting Abstracts
- Pub Date:
- December 2013
- Bibcode:
- 2013AGUFM.G33A0983D
- Keywords:
-
- 1218 GEODESY AND GRAVITY Mass balance;
- 0720 CRYOSPHERE Glaciers;
- 0794 CRYOSPHERE Instruments and techniques;
- 1294 GEODESY AND GRAVITY Instruments and techniques